TWO THEOREMS ON THE RIEMANN SUMMABILITY

HIROSHI HIROKAWA AND GEN-ICHIRÔ SUNOUCHI

(Received November 25, 1953)

1. The series $\sum_{\nu=1}^{\infty} a_{\nu}$ is said (R_1) -summable to zero if the series

(1)
$$F(t) = \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \sin \nu t,$$

where $s_n = \sum_{\nu=1}^{n} a_{\nu}$, converges in some interval $0 < t < t_0$, and if F(t) tends to zero as t tends to zero.

The series $\sum_{\nu=1}^{\infty} a_{\nu}$ is said (*R*, 1)-summable to zero if the series

(2)
$$G(t) = \sum_{\nu=1}^{\infty} a_{\nu} \frac{\sin \nu t}{\nu t}$$

converges in some interval $0 < t < t_0$, and if G(t) tends to zero as t tends to zero.

Recently, one of the present authors [2] proves the following theorem;

THEOREM A. Suppose that

$$\sum_{\nu=1}^{n} s_{\nu} = o(n^{\alpha}),$$
$$\sum_{\nu=n}^{\infty} \frac{|a_{\nu}|}{\nu} = O(n^{-\alpha})$$

where $0 < \alpha < 1$. Then the series $\sum_{\nu=1}^{\infty} a_{\nu}$ is (R_1) -summable to zero.

THEOREM B. Under the assumptions of Theorem A, the series $\sum_{\nu=1}^{\infty} a_{\nu}$ is (R, 1)-summable to zero.

The object of this paper is to generalize the above theorems.

THEOREM 1. Let s_n^{β} be the (C, β) -sum of $\sum_{n=1}^{\infty} a_n$. Then, if (3) $s_n^{\beta} = o(n^{\beta \alpha}),$

and

(4)
$$\sum_{\nu=n}^{\infty} \frac{|a_{\nu}|}{\nu} = O(n^{-\alpha}),$$