SOME TRIGONOMETRICAL SERIES, IX

Shin-ichi Izumi

(Received March 25, 1954)

This paper consists of two independent parts. The first part concerns uniform convergence of Fourier series and the second gives an approximation formula.

PART I.

- 1. R. Salem [1] has given a very general test for uniform convergence of Fourier series, which includes known criteria. By his idea, T. Kawata and the author [2] have given a test for uniform Cesàro summability of Fourier series. The last test, as is shown in [2], contains theorems due to Zygmund, Wiener-Marcinkiewicz and Salem. But the theorem due to Hardy-Littlewood [3] (Theorem 2) is not contained. We shall now generalize above criteria such that the last theorem is contained.
 - 2. THEOREM 1. If f(x) is a continuous function such that

(1)
$$\sum_{k=1}^{\lfloor n/2 \rfloor} \frac{n}{k^{1+\alpha}} \int_{\pi/n}^{2\pi/n} |f(x+t+2k\pi/n) - f(x+t+(2k+1)\pi/n)| dt = o(1)$$

uniformly in x for $-1 < \alpha < 1$, then the Fourier series of f(x) is summable (C, α) uniformly.

PROOF. Let $\sigma_n^{\alpha}(x)$ be the *n*-th Cesàro mean of the Fourier series of f(x) of order α . Then

$$\delta_n(x) = \sigma_n^{\alpha}(x) - f(x) = \frac{1}{\pi} \int_0^{\pi} \varphi_x(t) K_n^{\alpha}(t) dt$$

where $K_n^{\alpha}(t)$ is the Fejér kernel of order α . It is well known that

$$K_n^{\alpha}(t) = \psi_n^{\alpha}(t) + r_n^{\alpha}(t)$$

where

(2)
$$\psi_n^{\alpha}(t) = \cos\left(\left(n + \frac{1+\alpha}{2}\right)t - \frac{1-\alpha}{2}\pi\right)/A_n^{\alpha}\left(2\sin\frac{t}{2}\right)^{1+\alpha}$$

$$r_n^{\alpha}(t) = O(1/nt^2).$$

We have

$$\delta_n(x) = \frac{1}{\pi} \int_0^{\pi} = \frac{1}{\pi} \int_0^{\pi/n} + \frac{1}{\pi} \int_{\pi/n}^{\pi} = I_1 + I_2.$$

By the continuity of f(x), $I_1 = o(1)$ uniformly. Concerning I_2 , we have

$$I_2=rac{1}{\pi}\int_{\pi/n}^{\pi}arphi_x(t)\psi_n^{lpha}(t)dt+rac{1}{\pi}\int_{\pi/n}^{\pi}arphi_x(t)r_n^{lpha}(t)dt=I_3+I_4,$$