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This paper consists of two independent parts. The first part concerns
uniform convergence of Fourier series and the second gives an approximation
formula.

PART I.

1. R. Salem [1] has given a very general test for uniform convergence of
Fourier series, which includes known criteria. By his idea, T. Kawata and the
author [2] have given a test for uniform Cesaro summability of Fourier
series. The last test, as is shown in [2], contains theorems due to Zygmund,
Wiener-Marcinkiewicz and Salem. But the theorem due to Hardy-Littlewood
Γ3] (Theorem 2) is not contained. We shall now generalize above criteria
such that the last theorem is contained.

2. THEOREM 1. If fix) is a continuous function such that

• t + 2kπlri)—f{x+ t -f (2k -f l)π/ri)\dt =

uniformly in x for — 1< a < 1, then the Fourier series of/[x) is summable

(C, a) uniformly.

PROOF. Let σ%(x) be the n-th Cesaro mean of the Fourier series of f(x)
of order a. Then

It

Ux) = σ*(x) -Ax) = — I φS)K<f)dt
0

where K%t) is the Fejer kernel of order a. It is well known that

where

(2) *K0 = cos ((« + !

(3) r*n(t) = Oίl/nt*).
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By the continuity of f(x), Iτ = o(l) uniformly. Concerning I,, we have

= — f <P*(t)Ψ*n(t)dt + — f <P*Φr«n{f)dt =
/ /

7S + 74,


