ON ABSOLUTE LOGARITHMIC SUMMABILITY OF A SEQUENCE RELATED TO A FOURIER SERIES

R. Mohanty and B. Misra

(Received January, 10, 1954)

1. Definition A. Let $\lambda(\omega)$ be continuous, differentiable and monotone increasing in (A, ∞), where A is some positive number, and let $\lambda(\omega) \rightarrow \infty$ as $\omega \rightarrow \infty$. Suppose Σu_{n} is a given infinite series and let

$$
c(\omega)=\sum_{n \leqq \omega}\{\lambda(\omega)-\lambda(n)\} u_{n} .
$$

The series Σu_{n} is said to be summable $|R, \lambda(n), 1|$ if

$$
\int_{A}^{\infty}\left|d\left[\frac{c(\omega)}{\lambda(\omega)}\right]\right|<\infty
$$

i.e. if

$$
\int_{A}^{\infty} \frac{\lambda^{\prime}(\omega)}{\{\lambda(\omega)\}^{2}}\left|\sum_{n \leqq \omega} \lambda(n) u_{n}\right| d \omega<\infty .
$$

Definition B. Suppose $\left\{t_{n}\right\}$ is a given sequence and let $\tau_{n}=\left(t_{1}+\frac{1}{2} t_{2}+\right.$ $\left.\ldots+\frac{1}{n} t_{n}\right) / \log n$. If $\tau_{n} \rightarrow t$ as $n \rightarrow \infty$, then the sequence $\left\{t_{n}\right\}$ is said to be summable $(R, \log n, 1)$ to t. If the sequence $\left\{\tau_{n}\right\}$ is of bounded variation, i. e., if $\sum^{\infty}\left|\tau_{n}-\tau_{n+1}\right|<\infty$, the sequence is said to be summable $|R, \log n, 1|$.
2. Let $\varphi(t)$ be an even function integrable in the sense of Lebesgue in $(0, \pi)$ and defined outside $(-\pi, \pi)$ by periodicity. We assume that the constant term in the Fourier series of $\varphi(t)$ is zero and that the special point to be considered is the origin. In these circumstances
where

$$
\begin{equation*}
\varphi(t) \sim \sum_{1}^{\infty} a_{n} \cos n t \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \cos n t d t \tag{2.2}
\end{equation*}
$$

and we are to consider the series $\sum_{1}^{\infty} a_{n}$. It is well-known that!these formal simplifications do not impair the generality of the problem. We write s_{n} for $\sum_{1}^{n} a_{k}$ and use the following notations.

