ON ABSOLUTE LOGARITHMIC SUMMABILITY OF A SEQUENCE RELATED TO A FOURIER SERIES

R. MOHANTY and B. MISRA

(Received January, 10, 1954)

1. DEFINITION A. Let $\lambda(\omega)$ be continuous, differentiable and monotone increasing in (A, ∞) , where A is some positive number, and let $\lambda(\omega) \rightarrow \infty$ as $\omega \rightarrow \infty$. Suppose $\sum u_n$ is a given infinite series and let

$$c(\omega) = \sum_{n \leq \omega} \{\lambda(\omega) - \lambda(n)\} u_n.$$

The series $\sum u_n$ is said to be summable $|R, \lambda(n), 1|$ if

$$\int_{A}^{a} \left| d \left[\frac{c(\omega)}{\lambda(\omega)} \right] \right| < \infty,$$

i.e. if

$$\int_{A} \left| \frac{\lambda'(\omega)}{\{\lambda(\omega)\}^2} \right| \sum_{n \leq \omega} \lambda(n) u_n \left| d\omega < \infty \right|.$$

DEFINITION B. Suppose $\{t_n\}$ is a given sequence and let $\tau_n = \left(t_1 + \frac{1}{2}t_2 + \dots + \frac{1}{n}t_n\right)/\log n$. If $\tau_n \to t$ as $n \to \infty$, then the sequence $\{t_n\}$ is said to be summable $(R, \log n, 1)$ to t. If the sequence $\{\tau_n\}$ is of bounded variation, i.e., if $\sum_{n=1}^{\infty} |\tau_n - \tau_{n+1}| < \infty$, the sequence is said to be summable $|R, \log n, 1|$.

2. Let $\varphi(t)$ be an even function integrable in the sense of Lebesgue in $(0, \pi)$ and defined outside $(-\pi, \pi)$ by periodicity. We assume that the constant term in the Fourier series of $\varphi(t)$ is zero and that the special point to be considered is the origin. In these circumstances

(2.1)
$$\varphi(t) \sim \sum_{n=1}^{\infty} a_n \cos nt$$
, where

(2.2)
$$a_n = \frac{2}{\pi} \int_0^{\pi} \varphi(t) \cos nt \, dt,$$

and we are to consider the series $\sum_{1}^{\infty} a_n$. It is well-known that these formal simplifications do not impair the generality of the problem. We write s_m for $\sum_{1}^{n} a_k$ and use the following notations.