ON THE STRONG LAW OF LARGE NUMBERS

SHIGERU TSURUMI

(Received September 12, 1955)

1. The purpose of this paper is to state an extension of Kolmogorov's theorem [3] which provides a necessary and sufficient condition for the validity of the strong law of large numbers for a sequence of independent, identically distributed random variables.

We consider the probability space (\mathbf{X}, P) such that \mathbf{X} is a space whose points are denoted by t and P is a probability measure. Then our extension is stated as follows.

THEOREM. Let $\{X_n(t)\}$ be a sequence of independent random variables satisfying that

(1.1) there exists a positive constant K such that, for any positive integer m and for any extended real numbers¹⁾ $a_1, b_2, \ldots, a_m, b_m$,

$$\lim_{n} \sup_{n} \frac{1}{n} \sum_{i=0}^{n-1} P\{t ; a_{1} \leq X_{1+i}(t) < b_{1}, \dots, a_{m} \leq X_{m+i}(t) < b_{m}\}$$
$$\leq K \cdot P\{t; a_{1} \leq X_{1}(t) < b_{1}, \dots, a_{m} \leq X_{m}(t) < b_{m}\}.$$

Then the following (1.2) and (1.3) are equivalent.

(1.2)
$$\sum_{n=1}^{\infty} \int_{|X_n(t)| \epsilon^{A_n}} |X_n(t)| \, dP < \infty$$

for some Borel sets A_1, A_2, \ldots satisfying

$$A_i \cap A_j = 0$$
 $(i \neq j),$ $\bigcup_{n=1}^{\infty} A_n = [0, \infty),$

where some of A_n 's may be empty.

(1.3)
$$P\left\{t \; ; \; \lim_{n} \; \frac{1}{n} \sum_{i=1}^{n} X_{i}(t) = c \right\} = 1$$

for some constant c.

The proof appears in $\S 2$.

If $\{X_n(t)\}$ is identically distributed, (1.1) holds trivially and the sum in (1.2) is equal to the first absolute moment $E(|X_1|)$ common for all X_n 's, so that the theorem is reduced to Kolmogorov's.

2. To prove the theorem we need a lemma. Before stating this we must prepare several definitions and notations.

¹⁾ By an extended real number we mean either a usual real number or one of the symbols $+\infty$ and $-\infty$. In what follows we make the convention that when $a = -\infty$, " $a \leq$ " is replaced by "a <".