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1. The purpose of this paper is to state an extension of Kolmogorov’s
theorem [3] which provides a necessary and sufficient condition for the
validity of the strong law of large numbers for a sequence of independent,
identically distributed random variables.

We consider the probability space (X, P) such that X is a space whose
points are denoted by ¢ and P is a probability measure. Then our extension
is stated as follows.

THEOREM. Let {X,(8)} be a sequence of independent random variables satis-
fving that )
(1.1) there exists a positive constant K such that, for any positive integer m

and for any extended real numbers® a, b, . ..., Gm, b,
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Then the following (1.2) and (1.3) are equivalent,
(1.2 > f | Xa(2)| dP < oo
=l e,
for some Borel sets Ai, A, .... satisfying
ANA;=0 G+ UA.=[0),

where some of Ay’s may be empty.
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for some constant c.

The proof appears in § 2.

If {X.()} is identically distributed, (1.1) holds trivially and the sum in
(1.2) is equal to the first absolute moment E(]|X;|) common for all X;’s, so
that the theorem is reduced to Kolmogorov’s.

2. To prove the theorem we need a lemma. Before stating this we must
prepare several definitions and notations.

1) By an extended real number we mean either a usual real number or one of
the symbols + oo and —ce. In what follows we make the convention that when a =
—%0, “a=" is replaced by “a<”.



