CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, IF

HISAHARU UMEGAKI

(Received January 25, 1956)

1. Introduction. The theory of integration on a measure space has been generalized to a W^* -algebra by Segal [10] and Dixmier [2] as a noncommutative extension of it. Applying their theory, some parts of the probability theory may be described in a certain W^* -algebra. In the paper of Dixmier [2], he has proved the existence of a mapping $x \rightarrow x^e$ defined on a semi-finite W^* -algebra A acting on a Hilbert space H into its W^* -subalgebra A_1 with the similar properties of the Dixmier's trace (= natural mapping) in the finite W^* -algebra, A being semi-finite provided every non-zero projection in A contains a non-zero finite projection in A (cf. [5]). In the previous paper [11], we have discussed for a σ -finite finite W*-algebra A (with the faithful normal trace μ with $\mu(I) = 1$) that the mapping $x \to x^e$ is defined on $L^{1}(A)$ and valued on $L^{1}(A_{1})$ and it has the likewise properties with the conditional expectation in the usual probability space, and we have also c lled it the conditional expectation relative to the W^* -subalgebra A_1 , where $L^{(A)}$ being a Banach space of all integrable operators on H in the sense of Segal (cf. [10]) which coincides with that in the sense of Dixmier (cf. [2]) as Banach space. Nakamura-Turumaru have also given a very simple proof of the characterization theorem of the conditional expectation in A (cf. [8]).

If A is a commutative W^* -algebra with a faithful normal trace μ , then there exists a probability space $(\Omega, \mathbf{B}, \nu)$ such that, considering the space B of all bounded random variables as the multiplication algebra on a Hilbert space $L^2(\Omega, \mathbf{B}, \nu)$, B is isomorphic with A by the canonical mapping ϕ satis-

living $\mu(x) = \int_{\Omega} (\phi^{-1}(x))(\omega) d\nu(\omega)$ for every $x \in A$. Conversely, let $(\Omega, \mathbf{B}, \nu)$ be

a probability space. Then the multiplication algebra B is a W^* -algebra on $L^2(\Omega, \mathbf{B}, \nu)$ and μ , defined by the above equation, is a faithful normal trace on it. Furthermore, the canonical mapping ϕ defines an isomorphism between L(A) and $L^r(\Omega, \mathbf{B}, \nu)$ as Banach spaces $(r \ge 1)$, $L^r(A)$ being the Banach space defined by Dixmier (cf. [2]). For any W^* -subalgebra A_1 of A, there corresponds a σ -subfield \mathbf{B}_1 of \mathbf{B} , and A_1 , $L^r(A_1)$ are isomorphic with B_1 , $L^r(\Omega,$ $\mathbf{B}_1, \nu)$ respectively, where B_1 being the multiplication algebra of the bounded random variables on $(\Omega, \mathbf{B}_1, \nu)$. The conditional expectation defined for the commutative algebra A (relative to the A_1) is transformed to the one defined for the corresponding probability space $(\Omega, \mathbf{B}, \nu)$ (relative to the \mathbf{B}_1) by the canonical mapping (cf. [7] and [11]).

In the probability theory, the martingales have been investigated by many authors, particularly by Doob, Lévy and Ville (cf. [3]), which is defined