ON A THEOREM OF LINDELÖF CONCERNING PRIME ENDS

T. M. Flett

(Received April 28, 1956)
A short proof of the following well known theorem of Lindelöf has been given by Tsuji [2].

Theorem. Let D be a bounded simply-connected domain, and let $w=f(z)$ map D conformally on $|w|<1$. If $\left\{z_{n}\right\}$ is a sequence of points of D such that the sequence $w_{n}=f\left(z_{n}\right)$ converges to a point α of $|w|=1$ in a Stolz angle, $|\arg (\alpha-w)|<\frac{1}{2} \pi-\delta$, then every limit-point of the sequence $\left\{z_{n}\right\}$ is a principal point ${ }^{1)}$ of the prime end of D which corresponds to α.

In this note we show how the proof of the theorem may be simplified still further by using a very elementary topological argument.

Tsuji proves the theorem by combining the following results.
Lemma A. Let Dba bounded simply-connected domain, and let $w=f(z)$ map D conformally on $|w|<1$. Let $\left\{\rho_{n}\right\}$ be a sequence of positive numbers such that $\rho_{n+1} \leqq \frac{1}{2} \rho_{n}<1$, and let S_{n} be the domain $\frac{1}{2} \rho_{n}<|1-w|<\rho_{n}$, $|w|<1$. Then we can find an increasing sequence $\left\{n_{\nu}\right\}$ of positive integers, and a chain $\left\{q_{v}\right\}$ of cross-cuts of D associated with the prime end of D which corresponds to $w=1$, such that the image of q_{v} in $|w|<1$ is an arc of a circle with centre $w=1$ lying in S_{n}.

Lemma B. Let D be a bounded simply-connected domain, $F(D)$ its frontier, let $w=f(z)$ map D conformally on $|w|<1$, and let $z=\psi(w)$ be the inverse of f. Let $\left\{\rho_{n}\right\}$ be a sequence of positive numbers such that $\rho_{n_{+1}} \leqq \frac{1}{2} \rho_{n}<1$, and let T_{n} be the domain $\frac{1}{2} \rho_{n}<|w-1|<\rho_{n},|w|<1,|\arg (1-w)|<\frac{1}{2} \pi-\delta<$ $\frac{1}{2} \pi$. Then we can find an increasing sequence $\left\{n_{\nu}\right\}$ of positive integers such that the values of $\psi(w)$ in $\bar{T}_{q \nu}$ converge to a point a of $F(D)$.

The deduction of the theorem from these two lemmas is immediate. For we may suppose that $\alpha=1$, and that $\left\{z_{n}\right\}$ converges to a point a of $F(D)$. We can then find a chain of cross-cuts $\{\boldsymbol{q}$,$\} , associated with the prime end$ of D which corresponds to $w=1$, converging to the point a, and this is the required result.

[^0]
[^0]: 1) For the definition of this and other terms belonging to the theory of prime ends, see Carathéodory [1].
