ON SOME RANDOM RIEMANN-SUMS

Shigeru Takahashi

(Received March 30, 1956)

1. In the present note $\{t_i(\omega)\}$, $i = 1, 2, \ldots$, will denote a sequence of independent random variables defined on a probability space (Ω, \mathbf{B}, P) and each $t_i(\omega)$ have the uniform distribution on the interval [0, 1], that is, for $0 \le x \le 1$

$$P[t_i(\omega) < x] = x^{-1}$$

For each ω let $t_{i,n}(\omega)$ be the *i*-th value of $\{t_j(\omega)\}$ $(1 \leq j \leq n)$ arranged in the increasing order and let, for all n,

$$t_{0,n}(\omega) \equiv 0$$
 and $t_{n+1,n}(\omega) \equiv 1$

Further let f(t), $0 \le t \le 1$, denote a Borel-measurable and integrable function.

It is an interesting problem, proposed by K. Ito, whether the following Riemann-sums

(1.1)
$$S_{n}(\omega) = \sum_{i=1}^{n} f(t_{i,n}(\omega))(t_{i+1,n}(\omega) - t_{i,n}(\omega))$$

converge to $\int_{0}^{t} f(t) dt$ or not, in any sense. In [2] we proved that under

certain local conditions, we have

(1.2)
$$P\left[\lim_{n\to\infty} S_n(\omega) = \int_0^1 f(t) dt\right] = 1.$$

In this note we prove the following

THEOREM 1. If $f(t) \in L_p(0, 1) p > 1$, then (1.2) holds.

For $f(t) \in L(0, 1)$ we can not prove whether (1.2) holds or not.

2. Let us put, for $1 \le i \le n$ and n = 1, 2, ...,

(2.1)
$$d_{i,n}(\omega) = t_{j+1,n}(\omega) - t_i(\omega), \text{ if } t_i(\omega) = t_{j,n}(\omega) \quad (j = 1, 2, \dots, n)$$
and

(2.1') $d'_{i,n}(\omega) = t_i(\omega) - t_{j-1,n}(\omega)$, if $t_i(\omega) = t_{j,n}(\omega)$ (j = 1, 2, ..., n). Then we can write

(2.2)
$$S_n(\omega) = \sum_{i=1}^n d_{i,n}(\omega) f(t_i(\omega))$$

and

¹⁾ For the notations and definitions in the theory of probability see [1].