ON FUNCTIONS REGULAR IN A HALF-PLANE

GEN-ICHIRÔ SUNOUCHI

(Received July 12, 1956)

1. Let $\varphi(z)$ be an analytic function, regular for y > 0, and let

$$\int_{-\infty}^{\infty} |\varphi(x+iy)|^p \, dx \leq K^{*} \qquad (p>0)$$

for all value y > 0. Then we say that $\varphi(z)$ belongs to the class \mathfrak{H}_p (= The Hille-Tamarkin Class). E. Hille and J. D. Tamarkin [2], for $p \ge 1$ and T. Kawata [3], for 1 > p > 0, proved the following theorems.

THEOREM A. (1) A function $\varphi(z) \in \mathfrak{H}_p$ tends to a limit function $\varphi(x)$ in the mean of order p, and

$$\int_{-\infty}^{\infty} |\varphi(x+iy)|^p dx \uparrow \int_{-\infty}^{\infty} |\varphi(x)|^p dx \qquad \text{as } y \downarrow 0.$$

(2) Any $\varphi(z) \in \mathfrak{H}_p$ for almost all x tends to its limit function $\varphi(x)$ along any non-tangential path.

THEOREM B. A function $\varphi(z) \in \mathfrak{H}_p$ can be represented as a product $\varphi(z) = B(z)\psi(z)$ where B(z) is the Blaschke product and $\psi(z) \in \mathfrak{H}_p$ which does not vanish in y > 0.

THEOREM C. If the limit function $\varphi(x) \in L_p$, $1 \leq p \leq \infty$ has a Fourier transform $\Phi(x)$ in L_q $(1 \leq q \leq \infty)$, then the Poisson integral associated with $\varphi(x)$ can be written in the form

$$\frac{1}{\pi}\int_{-\infty}^{\infty}\varphi(t)\frac{ydt}{(t-x)^2+y^2}=\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}e^{ixt}e^{-yt}\Phi(t)dt.$$

These theorems are counterparts of theorems on functions belonging to class H_{ν} (p > 0) in a unit circle. Recently D. Waterman [6] proved \mathfrak{H}_{ν} (p > 1) analogue of the Littlewood-Paley and Zygmund theorems. In the present note, the author shows some generalized theorems following on his former paper [5].

We put by the definition

$$g_{\alpha}^{*}(x) \equiv g_{\alpha}^{*}(x; \varphi) = \left\{ \frac{1}{\pi} \int_{0}^{\infty} y^{2\alpha} \, dy \int_{-\infty}^{\infty} \frac{|\varphi'(t+iy)|^{2}}{|t-z|^{2\alpha}} \, dt \right\}^{1/2}$$

^{*)} Throughout this paper, A, B..... are constants and may be different from one occurence to another.