ON GENERAL ERGODIC THEOREMS II

SHIGERU TSURUMI

(Received September 5, 1956)

1. Introduction. E. Hopf [6] has established a pointwise ergodic theorem which asserts the convergence almost everywhere of averages $\frac{1}{n} \sum_{j=0}^{n-1} T^{j} f^{j}$ where T is an operator defined by a Markov process with an invariant distribution and where f is an integrable function. Recently this theorem has been extended to one for more general operator by N. Dunford and J. T. Schwartz [4]. We shall here observe the convergence almost everywhere of averages $\sum_{j=0}^{n-1} T^{j} f \Big/ \sum_{j=0}^{n-1} T^{j} g$ where T is a linear positive operator with some restrictions and where f and g are integrable and g is positive almost everywhere.

2. Notations and preliminaries. Let (X, \mathfrak{F}, μ) be a finite measure space such that X is a set and \mathfrak{F} a σ -field consisting of subsets of X and μ a non-negative countably additive set function defined on \mathfrak{F} and $\mu(X) < +\infty$.

Throughout this paper, "measurable", "almost all (almost everywhere)" and "integrable" mean " ϑ -measurable", " μ -almost all (μ -almost everywhere)" and " μ -integrable", respectively, and every function under consideration is real-valued.

We denote by $L_1(A)$ the Lebesgue space of measurable integrable functions f defined on $A \in \mathfrak{F}$, the norm being

$$|f|_1 = \int_A |f(x)| \mu(dx),$$

and by $L_{\infty}(A)$ the Lebesgue space of measurable essentially bounded functions f defined on $A \in \mathfrak{F}$, the norm being

$$|f|_{\infty} = \operatorname{ess\,sup}_{x\,\epsilon\,A} |f(x)|.$$

If A = X, we drop "X" in $L_1(X)$ and $L_{\infty}(X)$ and write L_1 and L_{∞} .

Let f and g be measurable and $A \in \mathfrak{F}$. If $f(x) \ge g(x)$ for almost all $x \in A$, we write " $f \ge g$ in A". Further, "f > g in A" and "f = g in A" are defined in like manner. If A = X, we drop the term "in X".

Let T be a linear operator of L_p into itself where p = 1 or ∞ . If T is a continuous operator, the operator norm of T is defined as usual and denoted by $|T|_p$. The operator T is called positive provided that $Tf \ge 0$ for every $f \in L_p$ with $f \ge 0$. A set $A \in \mathfrak{F}$ is called T-invariant provided that

$$T(f \cdot e_A) = Tf$$
 in A