ON THE INTERPOLATION OF ANALYTIC FAMILIES OF OPERATORS ACTING ON H^p-SPACES

E. M. STEIN AND GUIDO WEISS*)

(Received August 15, 1957)

1. Introduction. Let \mathfrak{P} be the class of all polynomials $P(w) = a_0 + a_1w + \ldots + a_kw^k$, where the a_j 's $(j = 1, 2, \ldots, k)$ are complex numbers and w is a complex variable. If p > 0 we can form the space H^{ν} , [11], of all functions F(w), analytic in the interior of the unit circle, satisfying

(1.1)
$$\mu_p(r;F) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(re^{i\theta})|^p d\theta \leq M < \infty,$$

where M is independent of r, $0 \le r < 1$. It is well known that $\mu_p(r; F)$ is a non-decreasing function of r, and, if $p \ge 1$,

(1.2)
$$||F||_p = {\lim_{n \to 1} \mu_p(r; F)}^{1/p}$$

is a norm. In fact, with this norm, H^p is complete; i. e. it is a Banach space. In case p < 1, however, $||F||_p$ is not a norm since the triangle inequality is no longer satisfied. ¹⁾ H^p , nevertheless, can be made into a complete topological vector space by introducing the metric $d_p(F, G) = ||F - G||_p^p$. In either of these cases the class \mathfrak{P} is dense in $H^p, p > 0$. We will make repeated use of the fact that, if $0 < p_1 \leq p_2$, then $||F||_{p_1} \leq ||F||_{p_2}$.

Let (M, μ) be a measure space, where M is the point set and μ the measure. If q > 0, $L^q(M, \mu) = L_q$ will denote the space of all complex-valued measurable functions, f, defined on M such that

(1.3)
$$||f||_q = \left\{ \int_M |f|^q d\mu \right\}^{1/q} < \infty.$$

We will refer to $||f||_q$ as the norm of f. Remarks analogous to the ones made about $||F||_p$ apply here: if $q \ge 1$, L^q becomes a Banach space; while, if q < 1, $d_q(f,g) = ||f-g||_q^q$ is a metric.²⁾

We say that a linear transformation, T, mapping \mathfrak{P} into a class of measurable functions defined on M is of type (p, q) in case there exists a constant A > 0 such that

$$\|TP\|_q \le A \|P\|_p,$$

*) The research conducted by the first author was supposrted in part by the United States Air Force under Contract No. AF 49 (638)-42, monitored by the AF office of Scientific Research of the Air Research and Development Command.

¹⁾ In order to avoid introducing unnecessary terminology, we shall still refer to $||F||_p$ as "the norm of F" when p < 1.

²⁾ No confusion should arise from the fact that we use the same [notation for the H^{p} -norm and the L^{q} -norm.