ON THE INTERPOLATION OF ANALYTIC FAMILIES OF OPERATORS ACTING ON \boldsymbol{H}^{p}.SPACES

E. M. Stein and Guido Weiss*)

(Received August 15, 1957)

1. Introduction. Let \mathfrak{P} be the class of all polynomials $P(w)=a_{0}+a_{1} w$ $+\ldots+a_{k} w^{k}$, where the a_{j}^{\prime} s $(j=1,2, \ldots, k)$ are complex numbers and w is a complex variable. If $p>0$ we can form the space H^{ν}, [11], of all functions $F(w)$, analytic in the interior of the unit circle, satisfying

$$
\begin{equation*}
\mu_{p}(r ; F)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|F\left(r e^{i \theta}\right)\right|^{p} d \theta \leqq M<\infty, \tag{1.1}
\end{equation*}
$$

where M is independent of $r, 0 \leqq r<1$. It is well known that $\mu_{p}(r ; F)$ is a non-decreasing function of r, and, if $p \geqq 1$,

$$
\begin{equation*}
\|F\|_{p}=\left\{\lim _{r \rightarrow 1} \mu_{p}(r ; F)\right\}^{1 / p} \tag{1.2}
\end{equation*}
$$

is a norm. In fact, with this norm, H^{p} is complete; i. e. it is a Banach space. In case $p<1$, however, $\|F\|_{p}$ is not a norm since the triangle inequality is no longer satisfied. ${ }^{1)} H^{p}$, nevertheless, can be made into a complete topological vector space by introducing the metric $d_{p}(F, G)=\|F-G\|_{p}^{p}$. In either of these cases the class \mathfrak{P} is dense in $H^{p}, \boldsymbol{p}>0$. We will make repeated use of the fact that, if $0<p_{1} \leqq p_{2}$, then $\|F\|_{p_{1}} \leqq\|F\|_{p_{2}}$.

Let (M, μ) be a measure space, where M is the point set and μ the measure. If $q>0, L^{a}(M, \mu)=L_{q}$ will denote the space of all complex-valued measurable functions, f, defined on M such that

$$
\begin{equation*}
\|f\|_{q}=\left\{\int_{M}|f|^{q} d \mu\right\}^{1 / q}<\infty . \tag{1.3}
\end{equation*}
$$

We will refer to $\|f\|_{q}$ as the norm of f. Remarks analogous to the ones made about $\|F\|_{p}$ apply here : if $q \geqq 1, L^{q}$ becomes a Banach space; while, if $q<$ 1, $\boldsymbol{d}_{q}(f, g)=\|f-g\|_{q}^{q}$ is a metric. ${ }^{2}$

We say that a linear transformation, T, mapping \mathfrak{P} into a class of measurable functions defined on M is of type (p, q) in case there exists a constant $A>0$ such that

$$
\begin{equation*}
\|T P\|_{q} \leqq A\|P\|_{p} \tag{1.4}
\end{equation*}
$$

[^0]
[^0]: *) The research conducted by the first author was supposrted in part by the United States Air Force under Contract No. AF 49 (638)-42, monitored by the AF office of Scientific Research of the Air Research and Development Command.

 1) In order to avoid introducing unnecessary terminology, we shall still refer to $\|F\|_{p}$ as "the norm of F " when $p<1$.
 2) No confusion should arise from the fact that we use the same [notation for the H^{p}-norm and the L^{q}-norm.
