NOTES ON TAUBERIAN THEOREMS FOR
 RIEMANN SUMMABILITY

Kenji Yano

(Received February 1, 1956 and in revised forms November 12, 1956 and September 13, 1957)

1. Introduction. In a given series

$$
\sum a_{n}=\sum_{n=1}^{\infty} a_{n} \quad\left(a_{0}=0\right)
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} s_{n} \frac{\sin n t}{n} \quad\left(\text { where } s_{n}=\sum_{\nu=0}^{n} a_{\nu}\right) \tag{1.1}
\end{equation*}
$$

converges for every value of $t(0<t<\delta \leqq 2 \pi)$, and

$$
\lim _{t \rightarrow+0} 2 \sum_{n=1}^{\infty} s_{n} \frac{\sin n t}{n}=s
$$

then we call that the series Σa_{n} is summable $\left(R_{1}\right)$ to s, and write

$$
\mathrm{\Sigma} a_{n}=s\left(R_{1}\right)
$$

Similarly, we call that the series Σa_{n} is summable ($R, 1$) to s, and write $\Sigma a_{n}=s(R, 1)$, if the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \frac{\sin n t}{n t} \tag{1.2}
\end{equation*}
$$

converges for every value of $t(0<t<\delta \leqq 2 \pi)$, and

$$
\lim _{t \rightarrow+0} \sum_{n=1}^{\infty} a_{n} \frac{\sin n t}{n t}=s
$$

The summabilities $\left(R_{1}\right)$ and ($R, 1$) have been studied by many writers, O. Szász [4,5,6,7], G.Sunouchi [1], H. Hirokawa land G. Sunouchi [3] and others. In this note we shall unify and extend the theorems due to the above writers. Generally speaking, the Riemann summabilities are near to the convergence of series and so Tauberian conditions of the above authors may be replaced by the conditions on $s_{n}^{-s}(s>0)$, which will be defined in a moment.

We denote by s_{n}^{γ} the n-th Cesàro sum of order γ of the series Σa_{n}, i.e.

$$
s_{n}^{\gamma}=\sum_{\nu=0}^{n} A_{n-\nu}^{\gamma} a_{\nu} \quad\left(a_{0}=0\right)
$$

where $A_{i t}^{\gamma}$ is defined by the identity

$$
(1-x)^{-\gamma-1}=\sum_{n=0}^{\infty} A^{\gamma} x^{n} \quad(|x|<1)
$$

