COHOMOLOGY THEORY AND DIFFERENT

HIDEO KUNIYOSHI

(Received August 13, 1958)

The relations between cohomology groups and different in the number theory were already treated by A. Weil [11], Y. Kawada [6], A. Kinohara [7] and M. Moriya [9] in cases of dimension 1 and 2. In the present paper we shall treat the same subjects for general dimensions under a slight modification.

In \$1 we shall explain the definitions and main results of this note. In \$2 we shall prove the equalities of the right, left- and two sided homological differents. \$3 and \$4 are preliminaries for the following sections. In \$5 we shall prove, essentially, that the homological different is not zero, and in \$6 we shall treat the reduction to the local homological different. In \$7 we shall consider the local homological different and prove the different theorem, and in \$8 we shall show the equality between homological differents and the usual different.

1. Definitions and results. Let R be a Dedekind ring, K its quotient field, L a finite separable extension field over K and Λ the principal order (the unique maximal order) of L over R. We regard Λ as an algebra over R.¹⁾ For any two sided Λ -module A, the homology groups $H_n(\Lambda, A)$ and the cohomology groups $H^n(\Lambda, A)$ are defined as usual [1] i.e.

(1.1)
$$H_n(\Lambda, A) = \operatorname{Tor}_n^{\Lambda e}(A, \Lambda),$$
$$H^n(\Lambda, A) = \operatorname{Ext}_{\Lambda e}^n(\Lambda, A).$$

An element $\lambda^e = \Sigma \lambda \otimes \mu$ of Λ^e induces a Λ^e -endomorphism $\overline{\lambda^e}$ of A

(1.2)
$$\overline{\lambda^{e}}: A \to A, \quad \overline{\lambda^{e}}(a) = \lambda^{e}a;$$

 $\overline{\lambda^{e}}$ induces an endomorphism $\widetilde{\lambda^{e}}$ of $H(\Lambda, A)$

(1.3)
$$\begin{split} \lambda^{\bar{v}} \colon H_n(\Lambda, A) \to H_n(\Lambda, A), \\ H_n(\Lambda, A) \to H_n(\Lambda, A). \end{split}$$

Therefore $H(\Lambda, A)$ may be considered as a Λ^{e} -module. Using these endomorphisms $\lambda^{\widetilde{e}}$, we define the *n*-homological (cohomological) different of Λ/R .

DEFINITION 1. Left *n*-homological and cohomological differents $D_n^l(\Lambda/R)$ and $D_l^n(\Lambda/R)$:

$$\begin{split} D^l_n(\Lambda/R) &= \{\lambda \in \Lambda \mid \lambda \widetilde{\otimes} 1 \ H_n(\Lambda, A) = 0 \qquad \text{ for all } A\}, \\ D^n_l(\Lambda/R) &= \{\lambda \in \Lambda \mid \lambda \widetilde{\otimes} 1 \ H^n(\Lambda, A) = 0 \qquad \text{ for all } A\}. \end{split}$$

¹⁾ In the following our main objects are these algebras, which we shall quote as "the number theoretical algebras" or "the number theoretical cases".