ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS, III

JUN TOMIYAMA

(Received November 10, 1958)

This paper is a continuation of the author's preceding papers [8], [9], in which we discuss certain existence-problems of σ -weakly continuous projections of norm one of different types of W^* -algebras.

By a projection of norm one we mean a projection mapping from a Banach space onto its subspace whose norm is one. In the following we concern with the projection of norm one in a W^* -algebra **M**. We denote by \mathbf{M}_* the space of all σ -weakly continuous linear functionals on **M**. On the other hand \mathbf{M}^* means the conjugate space of **M** and the second conjugate space of **M** is written by \mathbf{M}^{**} usually. However, in case **M** is a W^* -algebra \mathbf{M}^{**} is the W^* -algebra that plays a special rôle for **M** (cf. [3], [7]) so that we denote especially by $\widetilde{\mathbf{M}}$. A positive linear functional φ on a W^* -algebra is called singular if there exists no non-zero positive σ -weakly continuous functional such as $\psi \leq \varphi$. The closed subspace of \mathbf{M}^* generated by all singular linear functionals is denoted by \mathbf{M}^+_* . Then we get $\mathbf{M}^* = \mathbf{M}_* \oplus \mathbf{M}^*_*$ the sum is l^1 -direct sum. A uniformly continuous linear mapping π from a W^* -algebra **M** to another W^* -algebra **N** is called singular if ${}^t\pi(\mathbf{N}_*) \subset \mathbf{M}^*_*$ where ${}^t\pi$ means the transpose of π .

All other notations and definitions are referred to [7] and [8]. Before going to discussions, the author expresses his hearty thanks to Mr. M. Takesaki for his valuable suggestions and co-operations.

1. General decomposition theorem.

THEOREM 1. Let \mathbf{M} , \mathbf{N} be W^* -algebras, then any uniformly continuous linear mapping from \mathbf{M} to \mathbf{N} is uniquely decomposed into the σ -weakly continuous part and the singular part.

PROOF. Let π be a uniformly coninuous linear mapping from **M** into **N**, then ${}^{t}\pi$ is the mapping from **N**^{*} to **M**^{*}. Consider the restriction of ${}^{t}\pi$ to **N**_{*}. The transpose of this restriction is a σ -weakly continuous linear mapping $\tilde{\pi}$ from $\tilde{\mathbf{M}}$ to **N** and clearly $\tilde{\pi}$ is a σ -weakly continuous extension of π to $\tilde{\mathbf{M}}$. Denote by \mathbf{M}_{*}^{0} the polar of \mathbf{M}_{*} in $\tilde{\mathbf{M}}$, then we get a central projection z in $\tilde{\mathbf{M}}$ such as $\mathbf{M}_{*}^{0} = \tilde{\mathbf{M}}(1-z)$.

Put $\pi_1(a) = \widetilde{\pi}(az)$, $\pi_2(a) = \widetilde{\pi}(a(1-z))$ for each $a \in \mathbf{M}$. We have, clearly, $\pi = \pi_1 + \pi_2$. Moreover we get