ON THE PROJECTION OF NORM ONE IN W^{*}-ALGEBRAS, III

Jun Tomiyama

(Received November 10, 1958)

This paper is a continuation of the author's preceding papers [8], [9], in which we discuss certain existence-problems of σ-weakly continuous projections of norm one of different types of W^{*}-algebras.

By a projection of norm one we mean a projection mapping from a Banach space onto its subspace whose norm is one. In the following we concern with the projection of norm one in a W^{*}-algebra \mathbf{M}. We denote by \mathbf{M}_{*} the space of all σ-weakly continuous linear functionals on \mathbf{M}. On the other hand \mathbf{M}^{*} means the conjugate space of \mathbf{M} and the second conjugate space of \mathbf{M} is written by $\mathbf{M}^{* *}$ usually. However, in case \mathbf{M} is a W^{*}-algebra $\mathbf{M}^{* *}$ is the W^{*}-algebra that plays a special rôle for \mathbf{M} (cf. [3], [7]) so that we denote especially by $\widetilde{\mathbf{M}}$. A positive linear functional φ on a W^{*}-algebra is called singular if there exists no non-zero positive σ-weakly continuous functional such as $\psi \leqq \varphi$. The closed subspace of \mathbf{M}^{*} generated by all singular linear functionals is denoted by \mathbf{M}_{*}^{\perp}. Then we get $\mathbf{M}^{*}=\mathbf{M}_{*} \oplus \mathbf{M}_{*}^{\perp}$: the sum is l^{1}-direct sum. A uniformly continuous linear mapping π from a W^{*}-algebra \mathbf{M} to another W^{*}-algebra \mathbf{N} is called singular if ${ }^{t} \pi\left(\mathbf{N}_{*}\right) \subset \mathbf{M}_{*}^{+}$ where ${ }^{t} \pi$ means the transpose of π.

All other notations and definitions are referred to [7] and [8]. Before going to discussions, the author expresses his hearty thanks to Mr. M. Takesaki for his valuable suggestions and co-operations.

1. General decomposition theorem.

THEOREM 1. Let \mathbf{M}, \mathbf{N} be W^{*}-algebras, then any uniformly continuous linear mapping from \mathbf{M} to \mathbf{N} is uniquely decomposed into the σ-weakly continuous part and the singular part.

PROOF. Let π be a uniformly coninuous linear mapping from \mathbf{M} into \mathbf{N}, then ${ }^{t} \boldsymbol{\pi}$ is the mapping from \mathbf{N}^{*} to \mathbf{M}^{*}. Consider the restriction of ${ }^{t} \boldsymbol{\pi}$ to \mathbf{N}_{*}. The transpose of this restriction is a σ-weakly continuous linear mapping $\widetilde{\pi}$ from $\widetilde{\mathbf{M}}$ to \mathbf{N} and clearly $\widetilde{\pi}$ is a σ-weakly continuous extension of $\boldsymbol{\pi}$ to $\widetilde{\mathbf{M}}$. Denote by \mathbf{M}_{*}^{0} the polar of \mathbf{M}_{*} in $\widetilde{\mathbf{M}}$, then we get a central projection z in $\widetilde{\mathbf{M}}$ such as $\mathbf{M}_{*}^{0}=\widetilde{\mathbf{M}}(1-z)$.

Put $\pi_{1}(a)=\widetilde{\pi}(a z), \pi_{2}(a)=\widetilde{\pi}(a(1-z))$ for each $a \in \mathbf{M}$. We have, clearly, $\pi=\pi_{1}+\pi_{2}$. Moreover we get

