ON THE SUMMATION OF MULTIPLE FOURIER SERIES

KÔSI KANNO

(Received June 17, 1958)

1. Generalities. Let $f(x_1, \ldots, x_k) = f(x)$ be a real valued integrable function periodic with period 2π in $0 \le x_i \le 2\pi$, $i = 1, 2, \ldots, k$. Following S. Bochner [1] and K.Chandrasekharan [2], we define the 'spherical means' f(x, t) of a function f(x) at a point $x = (x_1, \ldots, x_k)$, for t > 0,

(1. 1)
$$f(x, t) = \frac{\Gamma(k/2)}{2(\pi)^{k/2}} \int_{\sigma} f(x_1 + t\xi_1, \dots, x_k + t\xi_k) \, d\sigma_{\xi},$$

where σ is the sphere $\xi_1^2 + \dots + \xi_k^2 = 1$ and $d\sigma_k$ is its (k-1) – dimentional volume element. f(x, t) considered as a function of the single variable t exists for almost all t, and integrable in every finite t-interval.

If p > 0, we define

(1. 2)
$$f_p(x, t) = \frac{2}{B(p, k/2) t^{2^{p+k-2}}} \int_0^t (t^2 - s^2)^{p-1} s^{k-1} f(x, s) \, ds,$$

which called the spherical mean of order p of the function f(x). At a point x, we write $f_p(x, t) = f_p(t)$ for $p \ge 0$, where we assume that $f_0(x, t) = f(x, t)$. The following properties of $f_p(t)$ are known [2].

(1. 3) $\int_{0}^{u} t^{k-1} |f(x, t)| dt = O(u^{k}), \quad \text{as } u \to \infty.$ (1. 4) $\int_{0}^{u} t^{k-1} |f(x, t)| dt = o(1), \quad \text{as } u \to 0.$

(1.5) $f_p(u) = O(1)$, for $p \ge 1$, as $u \to \infty$. Further, if we define, for $p \ge 0$ [2],

(1. 6) $\varphi_p(t) = t^{2^{p+k-2}} f_p(t) B(p, k/2)/2^p \Gamma(p),$ then we have, for $p + q \ge 1$,

(1. 7)
$$\varphi_{p+q}(t) = \frac{1}{2^{q-1}} \int_0^t (t^2 - s^2)^{q-1} s \varphi_p(s) \, ds.$$

It is clear for (1.7) that if $p \ge 1$ then $\varphi_p(t)$ is absolutely continuous in every finite interval excluding the origin.

Next, let us write the Fourier series of f(x) in the form,

¹⁾ The problem considered here was suggested by Professor G. Sunouchi.