ON DETERMINATION OF THE CLASS OF SATURATION IN THE THEORY OF APPROXIMATION OF FUNCTIONS II

GEN-ICHIRO SUNOUCHI AND CHINAMI WATARI

(Received August 1, 1959)

1. Introduction. Let f(x) be an integrable function, with period 2π and let its Fourier series be

(1)
$$\mathfrak{S}[f] \equiv \sum_{k=0}^{\infty} A_k(x) \equiv \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

Let $g_k(n)$ (k = 0, 1, 2, ...), $g_0(n) = 1$ be the "summating" function and consider a family of transforms of (1) by a method of summation G

(2)
$$P_n(x) = \sum_{k=0}^{\infty} g_k(n) A_k(x)$$

where the parameter n need not be discrete.

If there are a positive non-increasing function $\varphi(n)$ and a class K of functions in such a way that

(I) $||f(x) - P_n(x)|| = o(\varphi(n))$ implies f(x) = constant;

(II) $||f(x) - P_n(x)|| = O(\varphi(n))$ implies $f(x) \in K$

(III) $f(x) \in K$ implies $||f(x) - P_n(x)|| = O(\varphi(n))$

then it is said that the method of summation G is saturated with the order $\varphi(n)$ and with the class of saturation K.

Since the above definition was given by J. Favard [3], a number of authors have published their result: G. Alexits [0], P. L. Butzer, [2], J. Favard himself [4], M. Zamansky [9] and others.

The purpose of the present paper lies in giving proofs to the theorems stated in our previous paper [8].

Throughout the paper the norms should be taken with respect to the variable x, and the subscript p to L^p -norms will generally be omitted. Another convention is that the space (C) is meant the notation L^{∞} . (or, the case $p = \infty$ of L^p). Thus the generalized Minkowski inequality reads

$$\left|\int f(x,t)dt\right| \leq \int \left\|f(x,t)\right\|dt, \qquad p \geq 1$$

and the class $Lip(\alpha, p)$ with $p = \infty$ reduces to Lip α .

2. The inverse problem. Let us write $\Delta_n(x) = f(x) - P_n(x)$ and suppose that for some positive function $\Psi(k)$ and a positive constant *c*, we have