ON A CONJECTURE OF KAPLANSKY

SHÔICHIRO SAKAI

(Received August. 14,1959)

Prof. Kaplansky stated a conjecture that any derivation of a C^* -algebra would be automatically continuous [1]. In this note, we shall show that this conjecture is in fact true.

THEOREM. Any derivation of a C*-algebra is automatically continuous.

PROOF. Let A be a C^* -algebra, 'a derivation of A. It is enough to show that the derivation is continuous on the self-adjoint portion A_s of A. Therefore if it is not continuous, by the closed graph theorem there is a sequence $\{x_n\}$ $(x_n \neq 0)$ in A_s such that $x_n \rightarrow 0$ and $x'_n \rightarrow a + ib(\neq 0)$, where a and b are self-adjoint. First, suppose that $a \neq 0$ and there exists a positive number $\lambda(>0)$ in the spectrum of a (otherwise consider $\{-x_n\}$). It is enough to assume that $\lambda = 1$.

Then there is a positive element h(||h|| = 1) of A such that $hah \ge \frac{1}{2}h^2$. Put $y_n = x_n + 3 \cdot ||x_n|| \cdot I$, then $y_n \to 0$, $y'_n = x'_n$ and $(hy_nh)' = h'y_nh + hy'_n h + hy_nh'$; hence $(hy_nh)' \to h(a + ib)h$.

Therefore

$$||(hy_{n_0}h)' - h(a + ib)h|| < \frac{1}{8}$$
 for some n_0 (1).

On the other hand

$$hy_n h \leq 4 \|x_n\| h^2$$
 and $\frac{1}{2} \cdot \frac{hy_n h}{4 \|x_n\|} \leq hah$ (2)

Since $||x_n|| \cdot I + x_n \ge 0$, $\frac{hy_n h}{4||x_n||} \ge \frac{1}{2}h^2$.

Hence

Let C be a C^{*}-subalgebra of A generated by $hy_{n_0}h$ and I, then by the (3) there is a character φ of C such that $\varphi\left(\frac{hy_{n_0}h}{4||x_{n_0}||}\right) \ge \frac{1}{2}$.