ON THE ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES I

Tribikram Pati and Z. U. Ahmad

(Received October 16, 1959, Revised January 6, 1960)
1.1. Definitions. Let $\sum a_{n}$ be a given infinite series, and let s_{n}^{α} and t_{n}^{α} denote the n-th Cesàro means of order $\alpha(\alpha>-1)$ of the sequences $\left\{s_{n}\right\}$ and $\left\{n a_{n}\right\}$ respectively, where s_{n} is the n-th partial sum. The series $\sum a_{n}$ is said to be absolutely summable (C, α), or summable $|\mathrm{C}, \alpha|$, if the sequence $\left\{s_{n}^{\alpha}\right\}$ is of bounded variation, that is, if the infinite series $\sum\left|s_{n}^{\alpha}-s_{n-1}^{\alpha}\right|$ is convergent ([4], [6]).
1.2. In what follows we shall require the following identities.

$$
\begin{equation*}
t_{n}^{\alpha}=n\left(s_{n}^{\alpha}-s_{n-1}^{\alpha}\right) \tag{1.2.1}
\end{equation*}
$$

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{!A_{n}^{\alpha}} \sum_{\nu=1}^{V_{n}} A_{n-\nu}^{\alpha-1} \nu a_{\nu}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}^{\alpha} x^{n}=(1-x)^{-\alpha-1} \quad(|x|<1) ; \tag{1.2.3}
\end{equation*}
$$

and, by definition ([5]),
(1.2.4) $\quad A_{-1}^{\alpha}=0, A_{0}^{-1}=1, A_{n}^{-1}=0 \quad(n \geqq 1) ; A_{n}^{-2}=0 \quad(n \geqq 2) ;$

$$
A_{n}^{\alpha}=\left\{\begin{array}{cc}
\binom{n+\alpha}{n} & (\alpha>-1) \tag{1.2.5}\\
(-1)^{n}\binom{-\alpha-1}{n} & (\alpha \leqq-1)
\end{array}\right.
$$

$$
\begin{align*}
A_{n}^{\alpha} & =\Gamma(n+\alpha+1) /\{\Gamma(n+1) \Gamma(\alpha+1)\} \tag{1.2.6}\\
& \sim n^{\alpha} / \Gamma(\alpha+1)(\alpha \neq-1,-2, \ldots \ldots \ldots) .
\end{align*}
$$

For any sequence $\left\{\varepsilon_{n}\right\}$, we write

$$
\begin{equation*}
\Delta^{0} \varepsilon_{n}=\varepsilon_{n}, \Delta \varepsilon_{n}=\Delta^{1} \varepsilon_{n}=\varepsilon_{n}-\varepsilon_{n+1} \tag{1.2.7}
\end{equation*}
$$

and

