ON THE ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES I

TRIBIKRAM PATI AND Z.U. AHMAD

(Received October 16, 1959, Revised January 6, 1960)

1.1. Definitions. Let $\sum a_n$ be a given infinite series, and let s_n^{α} and t_n^{α} denote the *n*-th Cesàro means of order α ($\alpha > -1$) of the sequences $\{s_n\}$ and $\{na_n\}$ respectively, where s_n is the *n*-th partial sum. The series $\sum a_n$ is said to be absolutely summable (C, α) , or summable $|C, \alpha|$, if the sequence $\{s_n^{\alpha}\}$ is of bounded variation, that is, if the infinite series $\sum |s_n^{\alpha} - s_{n-1}^{\alpha}|$ is convergent ([4], [6]).

1.2. In what follows we shall require the following identities.

(1.2.1)
$$t_{n}^{\alpha} = n(s_{n}^{\alpha} - s_{n-1}^{\alpha}) \qquad ([6], [7]);$$

(1.2.2)
$$t_{n}^{\alpha} = \frac{1}{N} \frac{1}{A_{n-\nu}^{\alpha}} \sum_{\nu=1}^{\nu} A_{n-\nu}^{\alpha-1} \nu a_{\nu},$$

where

(1.2.3)
$$\sum_{n=0}^{\infty} A_n^{\alpha} x^n = (1-x)^{-\alpha-1} \qquad (|x|<1);$$

and, by definition ([5]),

(1.2.4)
$$A_{-1}^{\alpha} = 0, \ A_{0}^{-1} = 1, \ A_{n}^{-1} = 0 \quad (n \ge 1); \ A_{n}^{-2} = 0 \quad (n \ge 2);$$

(1.2.5) $A_{n}^{\alpha} = \begin{cases} \binom{n+\alpha}{n} & (\alpha > -1), \\ (-1)^{n} \binom{-\alpha - 1}{n} & (\alpha \le -1); \end{cases}$
(1.2.6) $A_{n}^{\alpha} = \Gamma(n+\alpha+1)/\{\Gamma(n+1)\Gamma(\alpha+1)\}$

$$\sim n^{\alpha}/\Gamma(\alpha+1) \ (\alpha \neq -1, -2, \dots).$$

For any sequence $\{\mathcal{E}_n\}$, we write

(1.2.7) $\Delta^0 \varepsilon_n = \varepsilon_n, \ \Delta \varepsilon_n = \Delta^1 \varepsilon_n = \varepsilon_n - \varepsilon_{n+1},$ and