ON ALMOST COMPLEX SYMPLECTIC MANIFOLDS AND AFFINE CONNECTIONS WITH RESTRICTED HOMOGENEOUS HOLONOMY GROUP $\boldsymbol{S p}(\boldsymbol{n}, \boldsymbol{C})$

Hidekiyo Wakakuwa

(Received Jure 11, 1959)

The purpose of this paper is at first to characterize a $4 n$-dimensional affinely connected manifold (with or without torsion) whose restricted homogeneous holonomy group is the real representation of the complex symplectic group $S p$ (n, C) or one of its subgroups. And conversely, we discuss to introduce in a $4 n$-dimensional manifold an affine connection (with or without torsion) whose restricted homogeneous holonomy group is the real representation of $S p(n, C)$ or one of its subgroups.

The almost complex symplectic manifold is equivalent to an almost quaternion manifold (§3), but the natural affine connection (§4) in an almost complex symplectic manifold is different from the natural affine connection ($(\boldsymbol{\phi}, \psi)$-connection by Obata's terminology, [5]) in an almost quaternion manifold ${ }^{2}$. They coincide if and only if the affine connection is a metric connection (with or without torsion) with respect to a related Riemannian metric (§3, Definition).

1. Preliminary remarks. Let $C_{2 n}$ be a complex $2 n$-dimensional linear space. Complex symplectic group $S p(n, C)$ in $C_{2 n}$ is the subgroup of $G L(2 n, C)$ leaving invariant a bilinear form $z^{s} \wedge w^{s+n}=z^{s} w^{s+n}-z^{s+n} w^{s}{ }^{3)}$ where (z^{α}) and $\left(w^{\alpha}\right)(\alpha=1, \ldots \ldots, 2 n)$ are vectors in $C_{2 n}$. Therefore if $M_{2 n}$ is a complex ($2 n, 2 n$)-matrix giving a transformation of $S p(n, C)$, then $M_{2 n} J_{2 n}{ }^{t} M_{2 n}=J_{2 n}$, where ${ }^{t} M_{2 n}$ denotes the transpose of $M_{2 n}$ and $J_{2 n}$ is a matrix such as $J=$ $\left(\begin{array}{cc}0 & E_{n} \\ -E_{n} & 0\end{array}\right)^{4)}$. Conversely if $M_{2 n}$ satisfies the above relation, then it is a matrix giving a transformation of $S p(n, C)$.

Next, we consider the real representation of $S p(n, C)$ in a real $4 n$-dimensional real linear space $R^{4 n}$.

Put $\mathfrak{M}=\left(\begin{array}{cc}M_{2 n} & 0 \\ 0 & \frac{M_{2 n}}{2}\end{array}\right)$, where $\bar{M}_{2 n}$ denotes the complex conjugate of $M_{2 n}$,

[^0]
[^0]: 1) We shall show that this manifold must be necessarily an "almost complex symplectic manifold" (\$3).
 2) Cf.Ehresmann [1]: Libermann [3], [4]; Obata [5].
 3) S runs from 1 to n. In this paper we adopt the summation convention.
 4) In this paper, E_{N} denctes a unit matrix of degree N.
