NOTE ON THE n-DIMENSIONAL TEMPERED ULTRA-DISTRIBUTIONS

Morisuke Hasumi

(Received July 1, 1960)

In this note, we shall describe explicitly the duality in the space of tempered ultra-distributions of J. Sebastião e Silva in the Euclidean n-space. And, as an application, we shall prove a theorem on the multiplication of tempered ultradistributions.

I wish to express my hearty thanks to Prof. K. Yosida and Prof. J. Sebastião e Silva for reading the manuscript and giving me valuable remarks.

Notations: Let R^{n} (resp. C^{n}) be the real (resp. complex) n-space whose generic points are denoted by $x=\left(x_{1}, \ldots \ldots, x_{n}\right)$ (resp. $z=\left(z_{1}, \ldots \ldots, z_{n}\right)$). We shall use the notations: (i) $x+y=\left(x_{1}+y_{1}, \ldots \ldots, x_{n}+y_{n}\right), \alpha x=\left(\alpha x_{1}, \ldots \ldots, \alpha x_{n}\right)$; (ii) $x \geqq 0$ means $x_{1} \geqq 0, \ldots \ldots, x_{n} \geqq 0$; (iii) $x \cdot y=\sum_{j=1}^{n} x_{j} y_{j}$ and (iv) $|x|$ $=\sum_{j=1}^{n}\left|x_{j}\right|$.

Let p be a system of integers $\geqq 0,\left(p_{1}, \ldots \ldots, p_{n}\right)$. We shall denote by $|p|$ the sum $\sum_{j=1}^{n} p_{j}$ and by D^{p} the partial differential operator $\partial^{p_{1}+\ldots+p_{n}} / \partial x_{1}{ }^{p_{1}} \ldots$ $\ldots \partial x_{n}{ }^{p_{n}}$. We put, for any integer $k \geqq 0, \partial^{k} / \partial x^{k}=\partial^{n k} / \partial x_{1}{ }^{k} \ldots . . \partial x_{n}{ }^{k} . \quad p+q$ is the system of integers $\left(p_{1}+q_{1}, \ldots \ldots, p_{n}+q_{n}\right)$. $p \geqq q$ means $p_{1} \geqq q_{1}, \ldots \ldots, p_{n} \geqq q_{n}$. Moreover, $x^{p}=x_{1}{ }^{p_{1}} \ldots \ldots x_{n}{ }^{p_{n}}$ and $x^{k}=x_{1}{ }^{k} \ldots \ldots x_{n}{ }^{k}$ (k an integer). For $p \geqq q$, put $\binom{p}{q}=\binom{p_{1}}{q_{1}} \ldots \ldots\binom{p_{n}}{q_{n}}$ with $\binom{p_{j}}{q_{j}}=p_{j}!/ q_{j}!\left(p_{j}-q_{j}\right)!$.

We shall denote once for all by σ vectors ($\sigma_{1}, \ldots \ldots, \sigma_{n}$) whose components are 0 or 1 and adopt the following conventions: (v) $(-1)^{|\sigma|}=(-1)^{\sigma_{1}+\ldots+\sigma_{n}}$; (vi) $x^{\sigma}=\left((-1)^{\sigma_{1}} x_{1}, \ldots \ldots,(-1)^{\sigma_{n}} x_{n}\right)$ for any vector x; (vii) $k^{\sigma}=\left((-1)^{\sigma_{1}} k, \ldots\right.$ $\ldots,(-1)^{\sigma_{n}} k$) for any integer k; (viii) $R_{\sigma}^{n}=\left\{x \in R^{n}: x^{\sigma} \geqq 0\right\}$; (ix) $C_{\sigma, \alpha}^{n}$ $=\left\{z \in C^{n}:(-1)^{\sigma_{1}} \mathscr{G} z_{1}>\alpha, \ldots \ldots,(-1)^{\sigma_{n}} \mathscr{F} z_{n}>\alpha\right\}$ with $\alpha>0$ and (x) $\Delta_{\sigma, \alpha}$ is the path of integration $\left(-\infty+i(-1)^{\sigma_{1}} \alpha, \infty+i(-1)^{\sigma_{1}} \alpha\right) \times \ldots \ldots \times(-\infty+$ $i(-1)^{\sigma_{n}} \alpha, \infty+i(-1)^{\sigma_{n}} \alpha$), oriented from $-\infty$ to $+\infty$. Finally V_{x} denotes the horizontal band in C^{n} defined by $V_{\alpha}=\left\{z \in C^{n}:\left|\mathscr{F} z_{1}\right| \leqq \alpha, \ldots \ldots,\left|\mathscr{F} z_{n}\right| \leqq \alpha\right\}$ with $\alpha>0$.

1. The basic spaces H and Λ_{∞}. Let H be the space of all C^{∞}-functions $\varphi(x)$ in R^{n} such that $\exp (k|x|) D^{p} \varphi(x)$ is bounded in R^{n} for any k and p. We define in H semi-norms
