NOTE ON THE *n*-DIMENSIONAL TEMPERED ULTRA-DISTRIBUTIONS

MORISUKE HASUMI

(Received July 1, 1960)

In this note, we shall describe explicitly the duality in the space of tempered ultra-distributions of J. Sebastião e Silva in the Euclidean n-space. And, as an application, we shall prove a theorem on the multiplication of tempered ultra-distributions.

I wish to express my hearty thanks to Prof. K. Yosida and Prof. J. Sebastião e Silva for reading the manuscript and giving me valuable remarks.

Notations: Let R^n (resp. C^n) be the real (resp. complex) *n*-space whose generic points are denoted by $x = (x_1, \ldots, x_n)$ (resp. $z = (z_1, \ldots, z_n)$). We shall use the notations: (i) $x + y = (x_1 + y_1, \ldots, x_n + y_n)$, $\alpha x = (\alpha x_1, \ldots, \alpha x_n)$; (ii) $x \ge 0$ means $x_1 \ge 0, \ldots, x_n \ge 0$; (iii) $x \cdot y = \sum_{j=1}^n x_j y_j$ and (iv) $|x| = \sum_{j=1}^n |x_j|$.

Let p be a system of integers ≥ 0 , (p_1, \ldots, p_n) . We shall denote by |p|the sum $\sum_{j=1}^n p_j$ and by D^p the partial differential operator $\partial^{p_1+\ldots+p_n}/\partial x_1^{p_1}\ldots$ $\ldots \partial x_n^{p_n}$. We put, for any integer $k \geq 0$, $\partial^k/\partial x^k = \partial^{nk}/\partial x_1^k\ldots \partial x_n^k$. p+q is the system of integers $(p_1 + q_1, \ldots, p_n + q_n)$. $p \geq q$ means $p_1 \geq q_1, \ldots, p_n \geq q_n$. Moreover, $x^p = x_1^{p_1}\ldots x_n^{p_n}$ and $x^k = x_1^k\ldots x_n^k$ (k an integer). For $p \geq q$, put $\binom{p}{q} = \binom{p_1}{q_1}\ldots \binom{p_n}{q_n}$ with $\binom{p_j}{q_j} = p_j!/q_j!(p_j - q_j)!$.

We shall denote once for all by σ vectors $(\sigma_1,\ldots,\sigma_n)$ whose components are 0 or 1 and adopt the following conventions: (v) $(-1)^{|\sigma|} = (-1)^{\sigma_1+\ldots+\sigma_n}$; (vi) $x^{\sigma} = ((-1)^{\sigma_1}x_1,\ldots,(-1)^{\sigma_n}x_n)$ for any vector x; (vii) $k^{\sigma} = ((-1)^{\sigma_1}k,\ldots,(-1)^{\sigma_n}k)$ for any integer k; (viii) $R_{\sigma}^n = \{x \in \mathbb{R}^n : x^{\sigma} \ge 0\}$; (ix) $C_{\sigma,\alpha}^n$ $= \{z \in \mathbb{C}^n : (-1)^{\sigma_1} \mathscr{F} z_1 > \alpha,\ldots,(-1)^{\sigma_n} \mathscr{F} z_n > \alpha\}$ with $\alpha > 0$ and (x) $\Delta_{\sigma,\alpha}$ is the path of integration $(-\infty + i(-1)^{\sigma_1}\alpha, \infty + i(-1)^{\sigma_1}\alpha) \times \ldots \times (-\infty + i(-1)^{\sigma_n}\alpha, \infty + i(-1)^{\sigma_n}\alpha)$, oriented from $-\infty$ to $+\infty$. Finally V_{α} denotes the horizontal band in \mathbb{C}^n defined by $V_{\alpha} = \{z \in \mathbb{C}^n : |\mathscr{F} z_1| \le \alpha,\ldots,|\mathscr{F} z_n| \le \alpha\}$ with $\alpha > 0$.

1. The basic spaces H and Λ_{∞} . Let H be the space of all C^{∞} -functions $\varphi(x)$ in \mathbb{R}^n such that $\exp(k|x|)D^p\varphi(x)$ is bounded in \mathbb{R}^n for any k and p. We define in H semi-norms