PROJECTIVE MODULES OVER SEMILOCAL RINGS

Yukitoshi Hinohara

(Received March 31, 1962)

Let R be a commutative ring with a unit element. If there exist no proper ideals \mathfrak{a} , \mathfrak{b} such that $R = \mathfrak{a} \bigoplus \mathfrak{b}$, then R is said to be indecomposable. If the number of maximal ideals of R is finite, then R is said to be semilocal. In [6], I. Kaplansky proved that, over a local ring, any projective module is free. Our objective in this paper is to generalize his theorem into

THEOREM. Over a commutative indecomposable semilocal ring, any projective module is free.

Every ring considered in this paper has a unit element which acts as unit operator on any module. A denotes a ring (not always commutative) and R denotes a commutative ring. Modules are always left modules.

1. Some lemmas on projective modules. We begin with a trivial

LEMMA 1. Let L, M, N be modules over a ring Λ such that $L \supset M \supset N$. If N is a direct summand of L, N is a direct summand of M.

PROOF. Let $L = N \bigoplus N'$. Then we have $M = N \bigoplus (N' \cap M)$.

LEMMA 2. Let P be a projective module over a ring Λ and p an element of P. If $p \notin \mathfrak{m} P$ for any maximal right ideal \mathfrak{m} of Λ , then Λp is a direct summand of P and p is a free basis of Λp , where $\mathfrak{m} P$ is the image of $\mathfrak{m} \bigotimes_{\Lambda} P$ $\rightarrow P$ by the natural map.

PROOF. Let F be a free module such that $F = P \oplus Q$, $\{u_i\}$ a basis of F;

$$p = \sum_{i=1}^{n} r_i u_i, r_i \in R;$$

 $u_i = p_i + q_i, p_i \in P, q_i \in Q$

Then we have that the right ideal (r_1, \ldots, r_n) generated by r_i is equal to Λ , since, if $r_i \in \mathfrak{m}$ for a maximal right ideal \mathfrak{m} , we have

$$p=\sum r_i p_i,$$

i.e., $p \in \mathfrak{m} P$. Therefore there exist elements s_1, \ldots, s_n in Λ such that