SOME PROPERTIES OF MANIFOLDS WITH CONTACT METRIC STRUCTURE

Yoji Hatakeyama, Yosuke Ogawa and Shukichi Tanno

(Received December 11, 1962)

Introduction. Recently S.Sasaki $[2]^{1}$ defined the notion of (ϕ, ξ, η, g) structure of a differentiable manifold and showed that the structure is closely related to almost contact structure defined by J.W.Gray [1]. Further he and one of the authors [3] defined four tensors N^{i}_{jk} , N^{i}_{j} , N_{jk} and N_{j} associated with this structure and enumerated relations connecting these tensors. Especially N_{jk} and N_{j} vanish identically when the structure is the one associated to contact structure, or so-called contact metric structure. And it was shown that the vanishment of N^{i}_{jk} implies the vanishment of all other tensors N^{i}_{j} , N_{jk} and N_{j} , and that in the case of contact metric structure the vanishment of N^{i}_{j} is equivalent to the fact that the vector field ξ^{i} is a Killing vector field.

In this note we call contact metric structure with vanishing $N^{i}{}_{j}$ or $N^{i}{}_{jk}$ K-contact metric structure or normal contact metric structure respectively, and we shall study some conditions for a manifold with almost contact metric structure or a Riemannian manifold to admit such structure.

1. Conditions for manifolds to admit K-contact metric structure. In this section, we shall study the case of K-contact metric structure, i. e., the case such that the associated vector field ξ^i is a Killing vector field. We shall begin with the following

LEMMA 1. Suppose ξ^i be a Killing vector field on an m-dimensional Riemannian manifold M^m , then the relations

(1. 1) $\boldsymbol{\xi}_{\boldsymbol{j},\boldsymbol{k}}^{\boldsymbol{i}} = R^{\boldsymbol{i}}_{\boldsymbol{j}\boldsymbol{h}\boldsymbol{k}}\boldsymbol{\xi}^{\boldsymbol{h}}$

hold good, where commas mean the covariant differentiation with respect to the Riemannian connection and R^{i}_{jhk} is the curvature tensor.

PROOF. Since ξ^i is a Killing vector field, we have

$$\pounds(\xi)g_{ij}=0,$$

where $\pounds(\xi)$ means the Lie derivation with respect to the infinitesimal transformation ξ^i , which implies

¹⁾ Numbers in brackets refer to the bibliography at the end of the paper.