ON ABSOLUTE RIESZ SUMMABILITY FACTORS

Ivor J. Maddox

(Received December 24, 1962)

1. In this note sufficient conditions are given for a series $\sum a_{n} \epsilon_{n}$ to be summable $|R, \lambda, \boldsymbol{\kappa}|$ whenever $\sum a_{n}$ is bounded $(R, \lambda, \boldsymbol{\kappa})$. We shall restrict ourselves to integer values of κ. The non-integer case appears to present considerable difficulties-it is hoped to deal with it in a further note. When $\lambda_{n}=n$, our result is an alternative version of a theorem on absolute Cesàro summability factors (see Pati and Ahmad [7]); the equivalence of (R, n, κ), (C, κ) and $|R, n, \kappa|$, $|C, \boldsymbol{\kappa}|$ summability being well known (Hobson [3], 90-98; Hyslop [4]).

In Section 4 we shall prove the following
THEOREM. Suppose that the sequence of positive numbers $\left\{\lambda_{n}\right\}$ increases to infinity, and that
(a) $0<a \leqq \Delta \lambda_{n} / \Delta \lambda_{n-1} \leqq A, a, A$ constants. If $A^{\kappa}(\omega)=O\left(\omega^{\kappa}\right), \kappa=0,1,2, \cdots$, where $A^{\kappa}(\omega)$ is defined in $\$ 2$, and
(i) $\sum\left|\epsilon_{n}\right|<\infty$,
(ii) there exists a function $g(u)$, defined for $u \geqq \lambda_{0}$, and a number α, such that for $\nu=0,1, \cdots$,

$$
\epsilon_{v}=\alpha+\int_{\lambda_{v}}^{\infty}\left(u-\lambda_{v}\right)^{\kappa} d g(u) \quad \text { with } \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty,
$$

then $\sum a_{n} \epsilon_{n}$ is summable $|R, \lambda, \kappa|$.
Although we shall be concerned only with the sufficiency of conditions (i) and (ii), we remark that (ii) is necessary without any restriction on λ_{n}. For it has been shown that (ii) is necessary for $\sum a_{n} \epsilon_{n}$ to be summable (R, λ, μ) whenever $\sum a_{n}$ is summable $(R, \lambda, \kappa), \mu \geqq 0, \kappa \geqq 0$ (see Maddox [5]). Since $|R, \lambda, \mu|$ implies (R, λ, μ) summability, the result follows. We note also that $\alpha=0$. For by (i) $\epsilon_{n}=o(1)$, and by (ii) $\epsilon_{n}=\alpha+o(1)$. Some remarks have been made on the condition (a) by Maddox [5]. The necessity of (i) has been

