ON ABSOLUTE RIESZ SUMMABILITY FACTORS

IVOR J. MADDOX

(Received December 24, 1962)

1. In this note sufficient conditions are given for a series $\sum a_n \epsilon_n$ to be summable $|R, \lambda, \kappa|$ whenever $\sum a_n$ is bounded (R, λ, κ) . We shall restrict ourselves to integer values of κ . The non-integer case appears to present considerable difficulties—it is hoped to deal with it in a further note. When $\lambda_n = n$, our result is an alternative version of a theorem on absolute Cesàro summability factors (see Pati and Ahmad [7]); the equivalence of (R, n, κ) , (C, κ) and $|R, n, \kappa|$, $|C, \kappa|$ summability being well known (Hobson [3], 90-98; Hyslop [4]).

In Section 4 we shall prove the following

THEOREM. Suppose that the sequence of positive numbers $\{\lambda_n\}$ increases to infinity, and that

(a) $0 < a \leq \Delta \lambda_n / \Delta \lambda_{n-1} \leq A$, a, A constants. If $A^{\kappa}(\omega) = O(\omega^{\kappa})$, $\kappa = 0, 1, 2, \cdots$, where $A^{\kappa}(\omega)$ is defined in §2, and

(i) $\sum |\epsilon_n| < \infty$,

(ii) there exists a function g(u), defined for $u \ge \lambda_0$, and a number α , such that for $\nu = 0, 1, \dots$,

$$\epsilon_{
u} = lpha + \int_{\lambda_{v}}^{\infty} (u - \lambda_{v})^{\kappa} \, dg(u) \qquad with \ \int_{\lambda_{n}}^{\infty} u^{\kappa} |dg(u)| < \infty,$$

then $\sum a_n \epsilon_n$ is summable $|R, \lambda, \kappa|$.

Although we shall be concerned only with the sufficiency of conditions (i) and (ii), we remark that (ii) is necessary without any restriction on λ_n . For it has been shown that (ii) is necessary for $\sum a_n \epsilon_n$ to be summable (R, λ, μ) whenever $\sum a_n$ is summable (R, λ, κ) , $\mu \ge 0$, $\kappa \ge 0$ (see Maddox [5]). Since $|R, \lambda, \mu|$ implies (R, λ, μ) summability, the result follows. We note also that $\alpha = 0$. For by (i) $\epsilon_n = o(1)$, and by (ii) $\epsilon_n = \alpha + o(1)$. Some remarks have been made on the condition (a) by Maddox [5]. The necessity of (i) has been