ON BOREL SERIES

H. Roth *)
(Received August 27, 1962)

Introduction. In his book "Leçons sur la théorie des fonctions", ÉBorel [1] considers certain infinite series, which in the theory of real variables, are sometimes referred to as Borel series, and which are defined by

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(A_{n} / r_{n}^{m_{n}}\right), \tag{1}
\end{equation*}
$$

$r_{n}^{2}=\left(x_{1}-a_{n}{ }^{(1)}\right)^{2}+\left(x_{2}-a_{n}{ }^{(2)}\right)^{2}+\cdots+\left(x_{n}-a_{n}{ }^{(h)}\right)^{2}, m_{n}<m . A_{n}, n=1,2, \cdots$, is a sequence of real numbers and $\sum A_{n}$ is assumed to be convergent. $a_{n}{ }^{(h)}, n$ $=1,2, \ldots$ are $h \geqq 1$ sequences of real numbers; x_{1}, \cdots, x_{h} are real variables and the exponents m_{n} are real positive numbers. According to a theorem of Borel, (1) converges almost everywhere.

If we put $A_{n} \equiv|A|^{p+q} / q$, where $\left|A_{0}\right|<|A|<1$, A not necessarily real, p and q positive integers, and $m_{n}=1, r_{n}=\left|x_{1}-a_{n}{ }^{(1)}\right| \equiv|x-(p / q)|$, i. e. if we identify $\left\{a_{n}{ }^{(1)}\right\}$ with the somehow simply ordered double sequence $\{\{(p / q)\}\}$, then we obtain the special case of (1)

$$
\begin{equation*}
f(A ; x) \equiv \sum_{p, q=1}^{\infty}\left(|A|^{p+q} /|q x-p|\right) . \tag{2}
\end{equation*}
$$

In (2), let x be a fixed, real irrational number. Historically (2) was first discussed by H.Bruns [2], while dealing with the convergence of a trigonometric series to a bounded function for certain values of the parameters which occur. Since then, (2) has received considerable attention, e.g. [3], [4].

The principal purpose of this paper is to discuss convergence and divergence of (2) from an arithmetic point of view and in particular show that (2) may still converge for a subset of Liouville numbers x. The main tool will be K.Mahler's [5] classification of numbers as it is exposed in detail by Th.Schneider [6]. It would of course be nice to obtain an "if and only if" theorem to the effect that (2) diverges for all real irrational x that satisfy certain properties. Unfortunately, this appears unattainable at this time, owing in part to the method applied.

In the first paragraph, in which we shall point out a generalization of a theorem of E. Maillet, we shall find some aspects which are relevant to some

[^0]
[^0]: *) NATO post-doctoral fellow, Los Angeles State College. The author expresses his deep gratitude to Dr. Wolfgang Schwarz for valuable criticism during the preparation of this manuscript.

