SATURATION OF LOCAL APPROXIMATION BY LINEAR POSITIVE OPREATORS

YOSHIYA SUZUKI

(Received December 19, 1964, and in revised form, March 25, 1965)

1. Introduction and inverse theorem. Let f(x) be an integrable function, with period 2π and let its Fourier series be

(1)
$$S[f] \equiv \sum_{k=0}^{\infty} A_k(x) \equiv \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$

If the positivity of f(x) implies the positivity of a linear operator $L_n(f, x)$, the operator is called a linear positive operator.

Let $\rho_k^{(n)}$ $(k=0, 1, 2, \dots, \rho_0^{(n)}=1)$ be the "summating" function and consider a family of linear positive operators

(2)
$$L_n(f, x) = \sum_{k=0}^{\infty} \rho_k^{(n)} A_k(x).$$

Let us suppose that for a positive constant C, we have

(3)
$$\lim_{n \to \infty} \frac{1 - \rho_k^{(k)}}{1 - \rho_1^{(n)}} = Ck^2 \quad (k = 1, 2, \cdots).$$

The purpose of the present paper lies in considering local saturation by linear positive operators. Throughout the paper the norms should be taken with respect to the variable x and the subscript p $(1 \le p \le \infty)$ to L^p -norm will be generally omitted. Another convention is that the space (C) is meant by the notation L^{∞} , and the interval [a, b] is an arbitrary subinterval of $[0, 2\pi]$. Thus the class $\operatorname{Lip}(\alpha, p)$ with $p = \infty$ reduces to $\operatorname{Lip}\alpha$. Also, let us write

$$\|L_n(f,x) - f(x)\|_{(a,b)} \equiv \left(\int_a^b |L_n(f,x) - f(x)|^p dx\right)^{\frac{1}{p}}$$

and

$$\operatorname{Lip}(1, p; a, b) \equiv \{f(x) | \sup_{|h| \leq \delta} || f(x+h) - f(x) ||_{(a, b)} = O(\delta) \}.$$