Tôhoku Math. Journ. Vol. 18, No. 4, 1966

ON A CLASS OF OPERATORS

VASILE ISTRĂȚESCU, TEISHIRÔ SAITÔ AND TAKASHI YOSHINO

(Received September 20, 1966)

1. We consider bounded linear operators on a Hilbert space H. Denote by $\sigma(T)$ the spectrum, by $\sigma_p(T)$ the point spectrum and by $\pi(T)$ the approximate point spectrum of an operator T. As in [3], an operator T is said to be of class (N) in case $||T^2x|| \ge ||Tx||^2$ for all unit vectors $x \in H$. A. Wintner [8] calls an operator T normaloid if $||T|| = \sup\{|(Tx, x)| : x \in H, ||x|| = 1\}$. It is known that T is normaloid if and only if $||T|| = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ or equivalently, $||T^n|| = ||T||^n$ for $n = 1, 2, \cdots$. If T is a hyponormal operator, that is $||Tx|| \ge ||T^*x||$ for all $x \in H$, then T is of class (N). In fact, if Tis a hyponormal operator, we have

$$||Tx||^2 = (T^*Tx, x) \le ||T^*(Tx)|| \le ||T^2x||$$

for any unit vector $x \in H$.

2. In this section we prove some theorems on an operator of class (N). The following theorem is suggested by [6] and [7].

THEOREM 1. For an operator T of class (N),

(i) T is normaloid,

and

(ii) T^{-1} is also of class (N) if T is invertible.

PROOF. To prove (i), it is sufficient to show that $||T^nx|| \ge ||Tx||^n$ for each unit vector $x \in H$ and $n=1, 2, \cdots$. If $n \le 2$, the inequality is obvious by the definition of class (N). Suppose that $||T^kx|| \ge ||Tx||^k$ for $k=1, 2, \cdots, n$ and $x \in H$, ||x||=1. Then

$$\|T^{n+1}x\| = \|Tx\| \left\| T^n \frac{Tx}{\|Tx\|} \right\| \ge \|Tx\| \left\| T \frac{Tx}{\|Tx\|} \right\|^n$$
$$= \|Tx\|^{1-n} \|T^2x\|^n \ge \|Tx\|^{1-n} \|Tx\|^{2n} = \|Tx\|^{n+1}$$