Tôhoku Math. Journ. Vol. 19, No. 3, 1967

SIMPLY INVARIANT SUBSPACES

Yoshiki Ohno

(Received June 20, 1967)

Our subject is a theorem on simply invariant subspaces of $L_{\mathfrak{h}}^{p}$, the usual L^{p} -space taking values in a Hilbert space \mathfrak{h} . Let X be a compact Hausdorff space and A a Dirichlet algebra on X. We shall fix a non-negative finite Borel measure m on X such that

$$f \longrightarrow \int f dm \qquad (f \in A)$$

defines a multiplicative linear functional on A. Define A_0 to be the set

$$A_0 = \{f \in A; \int f dm = 0\}.$$

Let \mathfrak{h} be a separable Hilbert space and let $L^p_{\mathfrak{h}}$ $(1 \leq p \leq \infty)$ denote the space of \mathfrak{h} -valued functions on X which are weakly measurable and whose norms are in scalar $L^p(dm)$. $L^2_{\mathfrak{h}}$ is a Hilbert space for the inner product

$$(f,g) = \int (f(x),g(x))_{\mathfrak{h}} dm$$

where the inner product on the right is the one in \mathfrak{h} . We define $A_{\mathfrak{h}}$ by $A \otimes_{\lambda} \mathfrak{h}$, the completion of the algebraic tensor product $A \otimes \mathfrak{h}$ under the uniform norm in $C(X, \mathfrak{h})$ (the space of all \mathfrak{h} -valued continuous functions on X). For $1 \leq p < \infty$ we define $H^p_{\mathfrak{h}}$ by

$$H^p_{\mathfrak{h}} = [A_{\mathfrak{h}}]_p$$

the closure of $A_{\mathfrak{h}}$ in $L^p_{\mathfrak{h}}$ and we define $H^{\infty}_{\mathfrak{h}}$ by

$$H^{\infty}_{\mathfrak{h}} = H^{1}_{\mathfrak{h}} \cap L^{\infty}_{\mathfrak{h}}.$$