Tôhoku Math. Journ. Vol. 19, No. 3, 1967

WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES

Kazuoki Azuma

(Received June 15, 1967)

1. Let $(\Omega, \mathfrak{A}, P)$ be a probability space and $(\mathfrak{A}_n)_{n=1,2,\ldots}$ be an increasing family of sub σ -fields of \mathfrak{A} (we put $\mathfrak{A}_0 = (\phi, \Omega)$). Let $(x_n)_{n=1,2,\ldots}$ be a sequence of bounded martingale differences on $(\Omega, \mathfrak{A}, P)$, that is, $x_n(\omega)$ is bounded almost surely (a.s.) and $\mathbb{E}\{x_n | \mathfrak{A}_{n-1}\} = 0$ a.s. for $n = 1, 2, \cdots$. It is easily seen that this sequence has the following properties [G] and [M], which have been introduced by Y. S. Chow ([1]) in an analogous form and by G. Alexits ([4]), respectively, and may be of independent interest.

[G] (x_n) is a sequence of martingale differences and there exist non negative constants c_n such that for every real number t

$$\mathbb{E}\{\exp(tx_n)|\mathfrak{A}_{n-1}\} \leq \exp(c_n^2 t^2/2) \text{ a.s. } (n=1,2,\cdots).$$

For each *n*, the minimum of those c_n is denoted by $\tau(x_n)$.

[M]
$$|x_n(\omega)| \leq K_n$$
 a.s. for $n = 1, 2, \cdots$

and $E\{x_{i_1}x_{i_2}\cdots x_{i_k}\}=0$ for $i_1 < i_2 < \cdots < i_k$; $k = 1, 2, \cdots$.

In this note we investigate the asymptotic behavior of the weighted sums of those random variables. In §3 we will deal with the class [M] and in §4 with the class [G] and the uniformly bounded case of martingale differences.

2. Preliminary Lemmas.

LEMMA 1. If (x_n) is a sequence of random variables for which [M] holds with $K_n = 1$ for all n, then for every real number t

(2. 1)
$$\operatorname{E}\left\{\exp\left(t\sum_{k=1}^{n}b_{nk}x_{k}\right)\right\} \leq \exp\left(\frac{t^{2}}{2}\sum_{k=1}^{n}b_{nk}^{2}\right),$$

where $(b_{nk})_{k=1, 2, \dots, n; n=1, 2, \dots}$ is an arbitrary sequence of real numbers.

PROOF. We may assume that $|b_{nk}| \neq 0$ for $k = 1, 2, \dots$. Since $|b_{nk}x_k| \leq |b_{nk}|$ a.s. and the exponential function $\exp(tb_{nk}x_k)$ is convex, we have