Tôhoku Math. Journ. Vol. 19, No. 3, 1967

REMARKS ON GROTHENDIECK RINGS

Kôji Uchida

(Received June 12, 1967)

R.G.Swan has obtained several important results on Grothendieck rings of a finite group. In this note we derive generalizations of some of his results. Throughout this note, R denotes a noetherian integral domain and K denotes its quotient field. All modules we consider are finitely generated unitary left modules. If A is a finite R-algebra (or K-algebra), G(A) denotes the Grothendieck group of A-modules, P(A) denotes the Grothendieck group of projective A-modules, and $C_0(A)$ its reduced class group, i.e, the subgroup of P(A) generated by the elements of the form [P]-[Q], where P, Q are projective and $K \otimes_R P \cong K \otimes_R Q$.

1. R is called regular if its localization $R_{\mathfrak{p}}$ is a regular local ring for each prime ideal \mathfrak{p} . A regular domain is integrally closed [1. Proposition 4.2]. In this section we calculate $G(R\pi)$ for a regular domain R of prime characteristic p and for any finite group π .

PROPOSITION 1. Any finitely generated module over a regular domain R has a finite projective dimension.

PROOF. Let M be such a module and let

$$\rightarrow X_n \xrightarrow{d_n} X_{n-1} \rightarrow \cdots \rightarrow X_0 \rightarrow M \rightarrow 0$$

be its projective resolution, where we assume every X_k is finitely generated. Let Y_n be the kernel of d_n . Then Y_n is a finitely generated torsion-free *R*-module. To show that some Y_n is projective, we first prove the following lemma.

LEMMA. Let R be an integral domain (not necessarily noetherian), and Y be a finitely generated torsion-free R-module. Let \mathfrak{p} be a prime ideal of R. If $Y_{\mathfrak{p}} = R_{\mathfrak{p}} \otimes_{\mathbb{R}} Y$ is $R_{\mathfrak{p}}$ -projective, then $Y_{\mathfrak{l}}$ is $R_{\mathfrak{q}}$ -projective for each \mathfrak{q} which does not contain a certain element $r \notin \mathfrak{p}$.

PROOF. Let $F \xrightarrow{f} Y \rightarrow 0$ be exact where F is a finitely generated free Rmodule. Then the sequence $F_y \xrightarrow{f_p} Y_y \rightarrow 0$ splits by assumption, and we have a