Tôhoku Math. Journ. 21(1969), 304-320.

FUNCTIONS OF L^p-MULTIPLIERS

Satoru Igari*)

(Received January 9, 1969)

1. Introduction. Let Γ be a locally compact non-compact abelian group and $B(\Gamma)$ be the space of all Fourier-Stieltjes transforms of bounded measures on the dual group G of Γ . Then it is known that a function Φ on the interval [-1,1] is extended to an entire function if and only if $\Phi(f) \in B(\Gamma)$ for all fin $B(\Gamma)$ with the range contained in [-1,1] (see, for example, [10: p.135]).

A function φ defined on Γ is called an L^p -multiplier if for every $f \in L^p(G)$ there exists a function g in $L^p(G)$ so that $\varphi \hat{f} = \hat{g}$, where \hat{f} denotes the Fourier transform of f. The set of all L^p -multipliers will be written by $M_p(\Gamma)$ and the norm of $\varphi \in M_p(\Gamma)$ is defined by

$$\|\varphi\|_{M_p(\Gamma)} = \sup \{ \|g\|_{L^p(G)} : \|f\|_{L^p(G)} = 1 \}.$$

If we define the product in $M_p(\Gamma)$ by the pointwise multiplication, it is a commutative Banach algebra with identity.

It is well-known that $M_1(\Gamma)$ coincides with $B(\Gamma)$ with the norm of measures and $M_2(\Gamma) = L^{\infty}(\Gamma)$ isometrically. If $1 \leq q \leq p \leq 2$, then $M_q(\Gamma) \subset M_p(\Gamma)$ and if 1/p + 1/p' = 1, then $M_p(\Gamma) = M_{p'}(\Gamma)$ isometrically.

Our main theorem is the following:

THEOREM 1. Let Γ be a locally compact non-compact abelian group. Assume $1 \leq p < 2$ and Φ is a function on [-1, 1]. Then $\Phi(\varphi) \in M_p(\Gamma)$ for all φ in $M_1(\Gamma)$ whose range is contained in [-1, 1], if and only if Φ is extended to an entire function.

2. Equivalence of multiplier transforms. In this section we shall show the equivalence of multiplier transforms which will be needed later.

A measurable function φ on the real line **R** is said to be regulated if there exists an approximate identity u_{ε} not necessarily continuous such that

$$\lim_{\varepsilon \to 0} \varphi * u_{\varepsilon}(x) = \varphi(x)$$

*) Supported in part by the Sakkokai Foundation.