Tôhoku Math. Journ. 21(1969), 297-303.

HYPERSURFACES SATISFYING A CERTAIN CONDITION ON THE RICCI TENSOR

Shûkichi Tanno

(Received December 10, 1968)

1. Introduction. The Riemannian curvature, tensor R of a locally symmetric Riemannian manifold (M,g) satisfies

(*) $R(X, Y) \cdot R = 0$ for any tangent vectors X and Y,

where the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M. A result of K. Nomizu [2] tells us that the converse is affirmative in the case where M is a certain hypersurface in a Euclidean space. That is:

Let M be an m-dimensional, connected and complete Riemannian manifold which is isometrically immersed in a Euclidean space E^{m+1} so that the type number $k(x) \ge 3$ at least at one point x. If M satisfies condition (*), then it is of the form $M=S^k \times E^{m-k}$, where S^k is a hypersphere in a Euclidean subspace E^{k+1} of E^{m+1} and E^{m-k} is a Euclidean subspace orthogonal to E^{k+1} .

Let R_1 be the Ricci tensor of (M,g). Then condition (*) implies in particular

(**) $R(X, Y) \cdot R_1 = 0$ for any tangent vectors X and Y.

First we have

THEOREM A. Let M be an m-dimensional, connected and complete Riemannian manifold which is isometrically immersed in a Euclidean space E^{m+1} so that the type number $k(x) \ge 3$ at least at one point x. If Msatisfies condition (**) and has the positive scalar curvature, then it is of the form $M = S^k \times E^{m-k}$.