ON THE CONVERGENCE OF NONLINEAR SEMI-GROUPS

ISAO MIYADERA

(Received June 14, 1968)

- 1. Introduction. Let X be a Banach space and let $\{T(\xi); \xi \ge 0\}$ be a family of (nonlinear) operators from X into itself satisfying the following conditions:
 - (i) $T(0) = I(\text{the identity}) \text{ and } T(\xi + \eta) = T(\xi) T(\eta) \text{ for } \xi, \eta \ge 0.$
 - (ii) For each $x \in X$, $T(\xi)x$ is strongly continuous in $\xi \ge 0$.

We call such a family $\{T(\xi); \xi \ge 0\}$ simply a nonlinear semi-group. If there is a non-negative constant c such that

(iii) $||T(\xi)x - T(\xi)y|| \le e^{c\xi} ||x - y||$ for $x, y \in X$ and $\xi \ge 0$, then a nonlinear semi-group $\{T(\xi); \xi \ge 0\}$ is said to be of local type. (In particular, if c = 0, it is called a nonlinear contraction semi-group.) We define the infinitesimal generator A_0 of a nonlinear semi-group $\{T(\xi); \xi \ge 0\}$ by

$$A_0 x = \lim_{\delta \to 0+} \delta^{-1}(T(\delta) - I) x$$

and the weak infinitesimal generator A' by

(1.2)
$$A'x = \operatorname{w-lim}_{\delta \to 0+} \delta^{-1}(T(\delta) - I)x,$$

if the right sides exist. (The notation " \lim " ("w- \lim ") means the strong \lim t (the weak \lim t) in X.)

REMARK. In case of *linear* semi-groups, it is well known that the weak infinitesimal generator coincides with the infinitesimal generator.

H. F. Trotter [9] proved the following convergence theorem of *linear* semi-groups.

THEOREM. Let $\{T_n(\xi); \xi \ge 0\}_{n=1,2,3,...}$ be a sequence of semi-groups (of linear operators) of class (C_0) satisfying the stability condition

$$||T_n(\xi)|| \leq Me^{\omega\xi} \text{ for } \xi \geq 0, n = 1, 2, 3, \cdots,$$

where M and ω are independent of n and ξ . Let A_n be the infinitesimal generator of $\{T_n(\xi); \xi \geq 0\}$ and define $Ax = \lim A_n x$.