ON THE EQUIVALENCE IN BANACH SPACES OF A CONVERGENCE THEOREM OF BERNSTEIN TYPE, A HAUSDORFF TYPE MOMENT PROBLEM AND A REGULARITY THEOREM

G. E. PETERSON AND DON H. TUCKER

(Received February 7, 1968)

1. Introduction. Suppose each of X and Y is a linear normed space and B=B[X, Y] is the space of bounded linear transformations from X into Y. Following the notation in [3] and [4], we denote the weak sequential extension of B by B^+ and of Y by Y^+ . We shall denote by C the space of continuous functions on [0, 1] with values in X, the space having the uniform norm topology, and by C_0 the subspace of C consisting of those functions f such that $f(0)=\theta_x$, the zero element of X.

For each $\alpha \ge 0$, C_{α} will denote C_0 if $\alpha > 0$ and it will signify C if $\alpha = 0$. We shall suppose throughout that $\Phi = \{\varphi_k\}_{k=0}^{\infty}$ represents a sequence of elements of B.

DEFINITION 1.

$$B_n^{lpha}[\Phi,f] = \sum_{k=0}^n {n+lpha \choose n-k} [\Delta^{n-k} \varphi_k] \cdot f\left(rac{k}{n}
ight)$$

will be called the (n, α) -Bernstein transform of f for each $f \in C$. Here we understand that

$$\begin{pmatrix} n+\alpha\\n-k \end{pmatrix} = \frac{\Gamma(n+\alpha+1)}{(n-k)! \Gamma(k+\alpha+1)} \quad \text{for } 0 \leq k < n ,$$

$$= 1 \quad \text{for } k = n ,$$

$$= 0 \quad \text{for } k > n ,$$

$$\Delta^{\nu}\varphi_{k} = \sum_{m=0}^{\nu} (-1)^{\nu-m} {\nu \choose m} \varphi_{k+\nu-m} \quad \text{for } \nu, k = 0, 1, 2, \cdots .$$

and