ON THE ABSOLUTE NÖRLUND SUMMABILITY OF THE FACTORED FOURIER SERIES

Kosi Kanno

(Received October 15, 1968)

1. Let $\{s_n\}$ denote the *n*-th partial sum of a given infinite series $\sum a_n$. Let $\{p_n\}$ be a sequence of constants, real or complex and let

$$P_n = p_0 + p_1 + \cdots + p_n, P_{-1} = p_{-1} = 0.$$

The sequence $\{t_n\}$, given by

(1.1)
$$t_n = \frac{1}{P_n} \sum_{k=0}^n p_{n-k} s_k = \frac{1}{P_n} \sum_{k=0}^n P_k a_{n-k}$$

defines the Nörlund means of the sequence $\{s_n\}$ generated by the sequence $\{p_n\}$.

Then, the series $\sum a_n$ is said to be summable $|N, p_n|$, if the sequence $\{t_n\}$ is of bounded variation, that is, the series

(1.2)
$$\sum_{n} |t_n - t_{n-1}|$$

is convergent.

When the special cases in which $p_n = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha)\Gamma(n+1)}$, $\alpha > 0$, and $p_n = \frac{1}{n+1}$, summability $|N,p_n|$ are the same as the summability $|C,\alpha|$ and the absolute harmonic summability, respectively.

2. Let f(t) be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. We assume, without any loss of generality, that the constant term in the Fourier series of f(t) is zero and that the Fourier series of f(t) is given by

(2.1)
$$\sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t).$$