Tôhoku Math. Journ. 21(1969), 644-653.

SASAKIAN HYPERSURFACES IN A SPACE OF CONSTANT CURVATURE

TOSHIO TAKAHASHI

(Received August 1, 1969)

1. Introduction. In the previous paper [10], we defined a Sasakian manifold with pseudo-Riemannian metric, and proved that a Sasakian manifold M^{2n+1} which is properly and isometrically immersed in a pseudo-Riemannian manifold \tilde{M}^{2n+2} of constant curvature zero is of constant curvature one. It is an extension of Corollary for Theorem 2 in Tashiro-Tachibana [13]. In this paper, we prove that a Sasakian manifold M^{2n+1} (with a pseudo-Riemannian metric) which is properly and isometrically immersed in a pseudo-Riemannian metric) which is properly and isometrically immersed in a pseudo-Riemannian manifold \tilde{M}^{2n+2} of constant curvature $\tilde{c} \neq 1$ is of constant curvature 1 (Theorem 1). In the case when $\tilde{c} = 1$, we need an additional condition; namely, the Sasakian manifold to be η -Einstein, then it is of constant curvature 1 (Theorem 4). Some related results on almost contact hypersurfaces are found in Tashiro [12], Kurita [3], Tashiro-Tachibana [13] and Okumura [6], [7].

In this paper, we call a Sasakian manifold with pseudo-Riemannian metric to be a pseudo-Sasakian manifold.

I would like to express my hearty thanks to Professor S. Sasaki and Professor S. Tanno for their valuable advices.

2. Let $(\widetilde{M}^{2n+2}, \widetilde{g})$ be a pseudo-Riemannian manifold of constant curvature \widetilde{c} . Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a pseudo-Sasakian manifold which is isometrically immersed in $(\widetilde{M}^{2n+2}, \widetilde{g})$. Then we have the formulas of Gauss and Codazzi:

(1)
$$R(X,Y) = \tilde{c}X \wedge Y + \mathcal{E}AX \wedge AY,$$

(2)
$$(\nabla_{\mathbf{X}}A)Y - (\nabla_{\mathbf{Y}}A)X = 0,$$

where $X \wedge Y$ denotes an endomorphism $Z \to g(Y, Z)X - g(X, Z)Y$, A is the field of the second fundamental form operators which corresponds to the field of unit normal vectors ζ to M^{2n+1} and $\varepsilon = \tilde{g}(\zeta, \zeta)$, $\varepsilon = +1$ or -1 (L. P. Eisenhart [1]). From (1), we get

$$(3) \qquad R(X,\xi)Y = \hat{c}\{\eta(Y)X - g(X,Y)\xi\} + \varepsilon\{\eta(AY)AX - g(AX,Y)A\xi\}.$$