A CLASS OF ALMOST CONTACT RIEMANNIAN MANIFOLDS

KATSUEI KENMOTSU

(Received. Nov. 20, 1971)

1. Introduction. Recently S. Tanno has classified connected almost contact Riemannian manifolds whose automorphism groups have the maximum dimension [9]. In his classification table the almost contact Riemannian manifolds are divided into three classes: (1) homogeneous normal contact Riemannian manifolds with constant ϕ -holomorphic sectional curvature if the sectional curvature for 2-planes which contain ξ , say $K(X, \xi), > 0$, (2) global Riemannian products of a line or a circle and a Kaehlerian manifold with constant holomorphic sectional curvature, if $K(X, \xi) = 0$ and (3) a warped product space $L \times_f CE^n$, if $K(X, \xi) < 0$. It is known that the manifold of the class (1) in the above statement is characterized by some tensor equations; it has a Sasakian structure.

The purpose of this paper is to characterize the warped product space $L \times_f CE^n$ by tensor equations (§ 2) and study their properties. From the definition by means of the tensor equations it is easily verified that the structure is normal, but not quasi-Sasakian (and is hence not Sasakian). In § 2, we define a structure closely related to the warped product which is studied by Bishop-O'Neill [1] and prove the local structure theorem. In § 3 we study some properties of the structure. § 4 is devoted to a study of η -Einstein manifolds. In the section 5 we show one of the main theorems in this paper. In the last section we study invariant submanifolds.

We follow here the notations and the terminology of the Volume 1 of Kobayashi-Nomizu [4].

2. Definition and examples. It is well-known that the structure tensors (ϕ, ξ, η, g) of the almost contact Riemannian maifold M satisfy

(2.1)
$$\phi\xi=0\;,\qquad \eta(\phi X)=0\;,\qquad \eta(\xi)=1\;,$$

(2.2)
$$\phi \phi X = -X + \eta(X)\xi$$
, $g(X, \xi) = \eta(X)$,

(2.3)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for any vector fields X and Y on M. It is known that the (ϕ, ξ, η, g) -structure is normal if and only if