TRANSFORMATION OF THE GENERALIZED WIENER MEASURE UNDER A CLASS OF LINEAR TRANSFORMATIONS

J. YEH AND W. N. HUDSON

(Received Nov. 9, 1971)

1. Introduction. Let C_w be the Wiener space consisting of continuous real valued functions x(t) on [0, 1] with x(0) = 0. It is the purpose of this paper to investigate the transformation of the generalized Wiener measure on C_w corresponding to the generalized Brownian motion process (i.e. Brownian motion process with nonstationary increments) when the elements of C_w are transformed by a Volterra integral equation of the second kind.

For $0 = t_0 < t_1 < \cdots < t_n \leq 1$, let $\mathfrak{F}_{t_1 \cdots t_n}$ be the σ -field of subsets of C_w of the type

(1.1)
$$E = \{x \in C_w; [x(t_1), \cdots, x(t_n)] \in B\}, \qquad B \in \mathfrak{B}^n$$

where \mathfrak{B}^n is the σ -field of Borel sets in the *n*-dimensional Euclidean space \mathbb{R}^n . Let b(t) be a strictly increasing continuous function on [0, 1]. It is well known that if we define a set function m on $\mathfrak{F}_{t_1,\dots,t_n}$ by

(1.2)
$$m(E) = \frac{1}{\left\{ (2\pi)^n \prod_{i=1}^n [b(t_i) - b(t_{i-1})]^2 \right\}^{1/2}} \int_{-\infty}^{\infty} (n) \int_{-\infty}^{\infty} \exp\left\{ -\frac{1}{2} \sum_{i=1}^n \frac{(\xi_i - \xi_{i-1})^2}{b(t_i) - b(t_{i-1})} \right\} d\xi_1 \cdots d\xi_n$$

with $\xi_0 \equiv 0$, then *m* is well defined on the σ -field \mathfrak{F} generated by the field \mathfrak{F}_0 which is the union of all the σ -fields $\mathfrak{F}_{t_1\cdots t_m}$ and is in fact a probability measure on (C_w, \mathfrak{F}) . (See for instance K. Itô [4] and P. Lévy [6].) Let \mathfrak{F}^* be the Carathéodory extension of \mathfrak{F}_0 relative to *m*. Then (C_w, \mathfrak{F}^*, m) is a complete probability measure space. We shall refer to \mathfrak{F}^* -measurability as Wiener measurability, and to *m* as the generalized Wiener measure corresponding to *b*.

The real valued function X(t, x) = x(t), $x \in C_w$, $t \in [0, 1]$ is then a stochastic process with independent increments on the probability space (C_w, \mathfrak{F}^*, m) . In fact X(0, x) = 0 for every $x \in C_w$, and the increment X(t'', x) - X(t', x)is distributed according to N(0, b(t'') - b(t')), i.e. the probability distribution Φ of the above increment is a normal distribution with density