RELATIVE BOUNDEDNESS AND SECOND ORDER DIFFERENTIAL EQUATIONS

David Lowell Lovelady

(Received November 14, 1972)

Abstract

Given two positive continuous functions α and β, necessary and sufficient conditions are given for the system $u^{\prime \prime}(t)=f(t)+A(t) u(t)$ to have an α-bounded solution u for each β-bounded forcing function f. Applications are given to a nonlinear perturbation problem: $u^{\prime \prime}(t)=$ $A(t) u(t)+F(t, u(t))$. Indications are given on how to extend these ideas to $n^{\text {th }}$ order equations.

I. Introduction. Let Y be a finite-dimensional normed linear space with norm ||, let R^{+}be the set of all nonnegative real numbers, and let $\mathscr{A}[Y]$ be the algebra of linear functions from Y to Y, with induced norm $\left\|\|\right.$. Let A be a continuous function from R^{+}to $\mathscr{A}[Y]$. In [2] and [3, Chapter V], W. A. Coppel has obtained necessary and sufficient conditions for it to be true that if f is a bounded continuous function from R^{+}to Y then there is a bounded solution u on R^{+}of

$$
\begin{equation*}
u^{\prime}(t)=f(t)+A(t) u(t) \tag{1}
\end{equation*}
$$

Coppel's ideas have been amplified and extended by several authors, usually in the direction of determining conditions which ensure that if f is in one of two given function spaces then there is a solution u of (1) in the other. For some recent results in this connection and an excellent discussion of this problem, we refer the reader to T. G. Hallam [4].

In the present work we shall conduct the same kind of study for the second-order problem

$$
\begin{equation*}
u^{\prime \prime}(t)=f(t)+A(t) u(t) . \tag{2}
\end{equation*}
$$

If one rewrites (2) as a first-order equation over Y^{2} and then invokes known results, one's hypotheses require extending the class of forcing functions in a way unnatural to our purposes, and one's conclusions give boundedness properties not only for u but also for u^{\prime}. (Compare the discussion of J. L. Massera and J. J. Schäffer [6, Chapter 12, § 120].) Thus we see the rationale for studying (2) as is.
II. Relatively bounded solutions. If γ is a positive continuous func-

