A CHARACTERIZATION OF METRIC SPHERES IN HYPERBOLIC SPACE BY MORSE THEORY

Thomas E. Cecil

(Received July 16, 1973)
0. Introduction. Let M^{n} be a differentiable manifold of class C^{∞}. By a Morse function f on M^{n}, we mean a differentiable function f on M^{n} having only non-degenerate critical points. A well-known topological result of Reeb states that if M^{n} is compact and there is a Morse function f on M^{n} having exactly 2 critical points, then M^{n} is homeomorphic to an n-sphere, S^{n} (see, for example, [3], p. 25).

In a recent paper, [4], Nomizu and Rodriguez found a geometric characterization of a Euclidean n-sphere $S^{n} \subset R^{n+p}$ in terms of the critical point behavior of a certain class of functions $L_{p}, p \in R^{n+p}$, on M^{n}. In that case, if $p \in R^{n+p}, x \in M^{n}$, then $L_{p}(x)=(d(x, p))^{2}$, where d is the Euclidean distance function.

Nomizu and Rodriguez proved that if $M^{n}(n \geqq 2)$ is a connected, complete Riemannian manifold isometrically immersed in R^{n+p} such that every Morse function of the form $L_{p}, p \in R^{n+p}$, has index 0 or n at any of its critical points, then M^{n} is embedded as a Euclidean subspace, R^{n}, or a Euclidean n-sphere, S^{n}. This result includes the following: if M^{n} is compact such that every Morse function of the form L_{p} has exactly 2 critical points, then $M^{n}=S^{n}$.

In this paper, we prove results analogous to those of Nomizu and Rodriguez for a submanifold M^{n} of hyperbolic space, H^{n+p}, the spaceform of constant sectional curvature -1 .

For $p \in H^{n+p}, x \in M^{n}$, we define the function $L_{p}(x)$ to be the distance in H^{n+p} from p to x. We then define the concept of a focal point of (M^{n}, x) and prove an Index Theorem for L_{p} which states that the index of L_{p} at a non-degenerate critical point x is equal to the number of focal points of (M^{n}, x) on the geodesic in H^{n+p} from x to p.

In section 2, we prove that a metric sphere $S^{n} \subset H^{n+p}$ can be characterized by the condition that every Morse function of the form L_{p}, $p \in H^{n+p}$, has exactly 2 critical points.

In section 3, we give an example which shows that a result analo-

[^0]
[^0]: This research was partially supported by NSF grant GP 28419 A1.

