THE UNSTABLE DIFFERENCE BETWEEN HOMOLOGY COBORDISM AND PIECEWISE LINEAR BLOCK BUNDLES

TAKAO MATUMOTO¹⁾ AND YUKIO MATSUMOTO²⁾

(Received December 5, 1973)

0. Introduction and statement of results. N. Martin and C. R. F. Maunder [9] developed the theory of homology cobordism bundles which is an adequate bundle theory in the category of polyhedral homology manifolds. They introduced certain Δ -sets H(n) which play the role of "structure groups" in the bundle theory. A typical k-simplex of H(n) is a homology cobordism bundle-automorphism of the product bundle $\Delta^k \times S^{n-1}$, or equivalently, a homology cobordism bundle over $\Delta^k \times I$ which is the product bundle over $\Delta^k \times \{0, 1\}$. According to N. Martin [10], the structure groups $\widetilde{PL}(n)$ of PL n-block bundles are homotopically equivalent to sub- Δ -sets $\overline{PL}(n)$ of H(n). By definition a typical k-simplex of $\overline{PL}(n)$ is a PL n-block bundle over $\Delta^k \times I$ which is the product bundle over $\Delta^k \times \{0, 1\}$.

Our main result is the following

THEOREM 1. If $n \ge 3$, we have

$$\pi_k(H(n), \ \overline{PL}(n)) = egin{cases} 0 & (k
eq 3) \ \mathscr{H}^3 & (k = 3) \ \end{pmatrix},$$

where \mathscr{H}^{s} is the abelian group of PL H-cobordism classes of oriented PL homology 3-spheres.

This improves the result of [10] in the unstable ranges. Theorem 1 will be proved in §1.

Now for the case n = 2, let \mathscr{G}_k be the ordinary knot cobordism group of *PL* (k, k + 2)-sphere pairs and let \mathscr{G}_k^H be the knot cobordism group of *PL* homology (k, k + 2)-sphere pairs; any element of \mathscr{G}_k^H is represented by a locally flat pair (M^k, N^{k+2}) consisting of oriented *PL* homology k- and (k + 2)-spheres. Such pairs (M_{11}^k, N_{11}^{k+2}) and (M_{22}^k, N_{22}^{k+2}) represent the same element of \mathscr{G}_k^H if and only if the connected sum $(M_{11}^k \# - M_{22}^k, N_{11}^{k+2} \# - N_{22}^{k+2})$ bounds a locally flat pair of acyclic manifolds (V^{k+1}, W^{k+3}) . Also \mathscr{G}^{AH} denotes the subgroup of \mathscr{G}_1^H whose element is represented by a pair $(M^1,$

¹⁾ Partially supported by Sakkokai Foundation.

²⁾ Partially supported by Fūjukai Foundation.