Tôhoku Math. Journ. 27 (1975), 135-152.

δ-COMMUTING MAPPINGS AND BETTI NUMBERS

Dedicated to Professor Carl B. Allendoerfer, 1911-1974.

BILL WATSON

(Received May 2, 1972)

The Hodge-de Rham theorem [3] for oriented, compact, Riemannian manifolds says that the classical cohomology groups with real coefficients can be calculated from a knowledge of the linearly independent harmonic differential forms on the manifold. Specifically, let $\mathscr{H}^{p}(M)$ denote the space of harmonic *p*-forms on the compact, oriented Riemannian manifold M, and let $H^{p}(M, R)$ denote the *p*-th Čech cohomology group with real coefficients. Let $H^{p}_{d}(M, R)$ be the de Rham cohomology space; i.e., the quotient vector space,

$$H^p_d(M, R) = \{ \operatorname{Ker} d \colon \Lambda^p \to \Lambda^{p+1} \} / \{ \operatorname{Im} d \colon \Lambda^{p-1} \to \Lambda^p \} .$$

THEOREM (Hodge-de Rham).

- (a) The dimension of $\mathscr{H}^{p}(M)$ is finite, and,
- (b) $H^{p}(M, R) \cong \mathscr{H}^{p}(M) \cong H^{p}_{a}(M, R).$

On our compact M, it is easy to show that a harmonic form is in the kernels of both the differential operator d and the codifferential operator δ , simultaneously. Therefore,

$$\mathscr{H}^p(M) = \{ \operatorname{Ker} d \colon \Lambda^p \to \Lambda^{p+1} \} \cap \{ \operatorname{Ker} \delta \colon \Lambda^p \to \Lambda^{p-1} \}$$

and, since we know that any manifold map $\varphi: M \to N$ onto another compact, oriented, Riemannian manifold, N, commutes with d on the p-forms of $N(\varphi^*d_N = d_M\varphi^*)$, it is natural to ask which manifold maps will commute with the codifferential. The hope is that we may find a way to transfer information about $\mathscr{H}^p(N)$ over to $\mathscr{H}^p(M)$ via φ^* , and, thereby, relate their cohomology groups.

We report here the complete classification of all C^2 manifold mappings $\varphi: M \to N$ between compact, connected, oriented, Riemannian manifolds which satisfy

(1)
$$\varphi^* \delta_N = \delta_M \varphi^*$$

on all of the *p*-forms of N for a fixed $p \ge 1$. In the case of 1-forms, we find equation (1) to be solved by a rather general class of mappings—