GLOBAL ANALYTIC-HYPOELLIPTICITY OF THE $\bar{\partial}$-NEUMANN PROBLEM

Gen Komatsu

(Received September 5, 1975)

Introduction. The (real-)analytic behavior (near the boundary) of solutions of the so-called $\bar{\partial}$-Neumann problem seems to have been unknown. In this paper we show that the global analytic-hypoellipticity (up to the boundary) holds on certain domains in C^{n} with analytic boundaries.

A systematic study of the $\bar{\partial}$-Neumann problem was made by Kohn [3], and the most difficult part of his work was the proof of the C^{∞} hypoellipticity (up to the boundary). Soon after, Kohn and Nirenberg [5] gave an elegant proof of the C^{∞} hypoellipticity by establishing the so-called subelliptic estimate. Their method is today used for various problems as the standard technique. However, it seems difficult, even if possible, to deduce the analytic-hypoellipticity of the $\bar{\partial}$-Neumann problem from the subelliptic estimate.

Under these circumstances we introduce in Lemma 2 a certain special vector field tangential along the boundary, which can be constructed in the case the Levi form is non-degenerate. It possesses the properties nice enough to carry out the commutator estimates (Lemmas 4 and 5), and these estimates together with the a priori estimate (Lemma 1) lead us in the usual way (see, e.g., Morrey and Nirenberg [6]) to our result. Our a priori estimate is suggested by a paper of Kohn [4].

It should be mentioned that the local problem still remains unsolved, and our method may not be applicable.

1. Statement of the theorem. Let $M \subset C^{n}$ be a bounded domain whose boundary $b M$ is regularly embedded in C^{n} with real codimension one. In all that follows we shall assume that the standard hermitian metric is given in C^{n} and that $b M$ is analytic.

Let r denote the geodesic distance to $b M$ measured as positive outside M and negative inside M, and normalized so that $|d r|^{2}=2$ near $b M$, where $|\cdot|$ is the length defined by the metric in C^{n}. With a sufficiently small constant $\rho>0$, we denote by Ω_{ρ}^{\prime} the tubular neighborhood $b M \times$ $(-\rho, \rho)$, i.e., $\left\{\mathrm{P} \in \boldsymbol{C}^{n} ;-\rho<r(\mathrm{P})<\rho\right\}$, and we set $\Omega_{\rho}=\bar{M} \cap \Omega_{\rho}^{\prime}$, where \bar{M}

