Tôhoku Math. Journ. **28** (1976), 135-143.

ADJOINT EQUATIONS OF AUTONOMOUS LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE RETARDATIONS

TOSHIKI NAITO

(Received August 25, 1975)

1. Introduction. Let $\rho \ge r \ge 0$, $p \ge 1$ be given real numbers (ρ may be $+\infty$) and $g(\theta)$ be Lebesgue integrable, positive and nondecreasing on $[-\rho, 0]$, where $[-\rho, 0]$ denotes $(-\infty, 0]$ when $\rho = +\infty$. Let $\mathscr{B} =$ $\mathscr{B}([-\rho, 0], C^d)$ be the Banach space of functions ϕ mapping $[-\rho, 0]$ into C^d , the complex *d*-dimensional column vector space, which are Lebesgue measurable on $[-\rho, 0]$, are continuous on [-r, 0] and have the property such that

$$||\,\phi\,|| = \left[\sup_{-r\leq heta\leq 0} |\,\phi(heta)\,|^p\, + \int_{-
ho}^0 |\,\phi(heta)\,|^p\, g(heta) d heta
ight]^{1/p} < \,\infty\,$$
 ,

where |v| denotes a norm of v in C^{d} . We shall discuss the adjoint equation of a linear functional differential equation

(1.1)
$$\frac{dx}{dt} = f(x_t) ,$$

where f is a bounded linear operator on \mathscr{B} into C^d . Denote by ${}^{T}v$ the transposed vector of $v \in C^d$ and by ${}^{T}C^d$ the space $\{{}^{T}v; v \in C^d\}$. For a given function ϕ mapping $[-\rho, 0]$ into C^d , the function ϕ^* mapping $[0, \rho]$ into ${}^{T}C^d$ is defined by $\phi^*(s) = {}^{T}\phi(-s), s \in [0, \rho]$. For a family \mathscr{F} of those functions ϕ , set $\mathscr{F}^* = \{\phi^*; \phi \in \mathscr{F}\}$. For a function x defined on $[t - \rho, t]$ (or $[t, t + \rho]$), designate by x_t (or x^t) the function on $[-\rho, 0]$ (or $[0, \rho]$) such that $x_t(\theta) = x(t + \theta), \theta \in [-\rho, 0]$ (or $x^t(s) = x(t + s), s \in [0, \rho]$).

Now consider a linear functional differential equation for a row vector y

(1.2)
$$\frac{dy}{dt} = -(y^t)\overline{f}|.$$

The symbol $\overline{f|}$ denotes the operator on \mathscr{B}^* naturally induced by f which operates on \mathscr{B}^* to the right (see (3.6) and (3.7)). However, we restrict the domain of $\overline{f|}$ on a space \mathscr{H}^* such that \mathscr{H} can be imbedded continuously in \mathscr{B} and that for any $\xi \in \mathscr{H}^*$ and any $\phi \in \mathscr{B}$, the convolution