NORMAL DERIVATIONS IN OPERATOR ALGEBRAS

S. K. BERBERIAN

(Received June 24, 1977)

Let A be a ring with involution (briefly, a *-ring), $\delta: A \to A$ a derivation of A, that is, $\delta(x + y) = \delta x + \delta y$ and $\delta(xy) = (\delta x)y + x(\delta y)$ for all x, y in A. When A is a *-algebra (over the complex field) one requires also that δ be a linear mapping. For each $a \in A$ we write δ_a for the inner derivation implemented by $a: \delta_a x = [a, x] = ax - xa$. For a derivation δ of A, the adjoint δ^* of δ is the derivation of A defined by the formula $\delta^* x = -(\delta(x^*))^*$; the purpose of the minus sign is to validate the formula $(\delta_a)^* = \delta_a$. Note also that ker $(\delta^*) = (\ker \delta)^*$.

In the first part of the paper we explore the relationships between several plausible definitions of normality for a derivation δ of a *-ring, with particular attention to C*-algebras and von Neumann algebras; in the second part, we discuss derivations of certain algebras of "unbounded operators" affiliated with AW^* -algebras.

Here are some natural candidates for the definition of "normal derivation" (there seems to be no compelling reason for making a definitive choice):

(N₁) ker $\delta = \ker (\delta^*)$;

(N₂) $\delta^*\delta = \delta\delta^*$;

(N₃) there exist a *-ring B containing A as a *-subring, and an element $b \in B$, such that b is normal $(b^*b = bb^*)$ and $\delta = \delta_b | A$ (that is, $\delta x = [b, x]$ for all $x \in A$);

 (N_*) there exist a *-ring B containing A as a *-subring, and an element $b \in B$, such that $\delta = \delta_b | A$ and $A \cap \{b\}'$ is a *-subring of A, where $\{b\}'$ denotes the commutant of b in B;

 (N_{b}) there exist a *-ring B containing A as a *-subring, and an element $b \in B$, such that $\delta = \delta_{b} | A$ and $\{b\}'$ is a *-subring of B.

The most natural condition is (N_2) , which mimics the definition of normality for an element of a *-ring. The remaining conditions are motivated by the well-known theorem of B. Fuglede: if $\delta = \delta_a$, $a \in A$, then (N_1) means that xa = ax if and only if $xa^* = a^*x$; thus, when A is a *-algebra of operators in a Hilbert space, δ_a satisfies (N_1) if and only if a is normal (Fuglede's theorem [13, Prob. 152]). Here are some elementary relations between these conditions: