Tôhoku Math. Journ. 30 (1978), 505-515.

TRANSFORMATION OF CONDITIONAL WIENER INTEGRALS UNDER TRANSLATION AND THE CAMERON-MARTIN TRANSLATION THEOREM

J. Yeh

(Received January 11, 1977)

1. Introduction. Consider the Wiener measure space $(C[0, t], \mathfrak{B}^*, m_w)$ where C[0, t] is the Wiener space consisting of all real valued continuous functions x on the interval [0, t] in \mathbb{R}^1 with x(0) = 0 for fixed $t \in (0, \infty)$; \mathfrak{W} is the algebra of Borel cylinders in C[0, t], i.e., the collection of all subsets W of C[0, t] of the type

(1.1)
$$W = \{x \in C[0, t]; [x(s_1), \cdots, x(s_n)] \in B\}$$

where *n* is an arbitrary positive integer, $0 = s_0 < s_1 < \cdots < s_n \leq t$, and *B* is an arbitrary member of the σ -algebra \mathfrak{B}^n of the Borel sets in the *n*-dimensional Euclidean space \mathbb{R}^n ; m_w is a probability measure on the algebra \mathfrak{W} defined for *W* as in (1.1) by

(1.2)
$$m_w(W)$$

= $\left\{ (2\pi)^n \prod_{j=1}^n (s_j - s_{j-1}) \right\}^{-1/2} \int_B \exp\left\{ -2^{-1} \sum_{j=1}^n (\hat{\xi}_j - \hat{\xi}_{j-1})^2 (s_j - s_{j-1})^{-1} \right\} m_L(d\xi)$

where $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, $\xi_0 = 0$ and m_L is the Lebesgue measure on $(\mathbb{R}^n, \mathfrak{B}^n)$; \mathfrak{W}^* is the σ -algebra of Carathéodory measurable subsets of C[0, t] with respect to the outer measure derived from the measure m_w on the algebra. Needless to say \mathfrak{W}^* contains the σ -algebra $\sigma(\mathfrak{W})$ generated by \mathfrak{W} and the Wiener measure space is a complete measure space. The \mathfrak{W}^* -measurability and m_w -integrability of a functional on C[0, t] will be referred to as the Wiener measurability and Wiener integrability.

By a conditional Wiener integral we mean specifically the conditional expectation $E^{w}(Y|X)$ of a real or complex valued Wiener integrable functional Y conditioned by the functional X on the Wiener space defined by

(1.3)
$$X[x] = x(t)$$
 for $x \in C[0, t]$

where the conditional expectation $E^{w}(Y|X)$ is not given as an equivalence class of random variables on the probability space $(C[0, t], \mathfrak{W}^{*}, m_{w})$ but as an equivalence class of random variables on the probability space