RANKIN'S METHOD IN THE CASE OF LEVEL $4 q$ AND ITS APPLICATION TO THE DOI-NAGANUMA LIFTING

Hisashi Kojima

(Received May 19, 1978, revised July 31, 1978)

Introduction. Let $S_{k}\left(\Gamma_{0}(N), \chi\right)$ be the space of integral cusp forms of Neben-type χ and of weight k with respect to $\Gamma_{0}(N)$. We associate with a cusp p of $\Gamma_{0}(N)$ a matrix $\alpha_{p}\left(\in S L_{2}(\boldsymbol{R})\right.$) such that $\alpha_{p}(\infty)=p$. Assume that k is an even positive integer. Then every $f \in S_{k}\left(\Gamma_{0}(N), \chi\right)$ has the Fourier expansion $\left(f \mid\left[\alpha_{p}\right]_{k}\right)(z)=\sum_{n=1}^{\infty} a_{n}^{(p)} e^{2 \pi i n z / \beta}$ at p for some $\beta>0$. The numbers $\left\{\alpha_{n}^{(p)}\right\}_{n=1}^{\infty}$ are called the Fourier coefficients of f at p.

When we apply Rankin's method to the Dirichlet series corresponding to an automorphic form in $S_{k}\left(\Gamma_{0}(N), \chi\right)$, certain explicit relations between the Fourier coefficients at all cusps are needed. In this paper, we deal with the problem: Given the coefficients at one cusp, can all coefficients at other cusps be determined? Recently, by using the W matrix in Atkin-Lehner [2] and Hecke operators, Asai [1] solved the problem positively in the case where N is square-free. If N is not square-free, we cannot immediately apply his argument.

In §1, by a different method, we give an affirmative answer to the above problem in the case $N=4 q$ with q prime. $\S 2$ and $\S 3$ are preparatory sections, where we describe certain properties of Eisenstein-Epstein functions and Maass' theta functions and, in the last section, we give an application of the result in $\S 1$ to the Doi-Naganuma lifting in the case of $\boldsymbol{Q}(\sqrt{4 q})$ with a prime $q \equiv 3(\bmod 4)$. The basic references for this subject are Asai [1], Doi-Naganuma [3], Naganuma [5], Shimura [7] and Zagier [8].

1. Fourier coefficients at various cusps. Throughout this paper, we use the following notations. Let N be a positive integer and let χ be a Dirichlet character modulo N. Put

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\boldsymbol{Z}) \right\rvert\, c \equiv 0 \bmod N\right\}
$$

We let \mathfrak{K} denote the complex upper half plane. Assume that f is a holomorphic function on \mathfrak{S}. Put $\left(f \mid[\sigma]_{k}\right)(z)=(\operatorname{det} \sigma)^{k / 2}(c z+d)^{-k} f(\sigma(z))$ for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}^{+}(\boldsymbol{R})$. We denote by $S_{k}\left(\Gamma_{0}(N), \chi\right)$ and by $S_{k}^{0}\left(\Gamma_{0}(N), \chi\right)$

