PROPERTY L AND W-* ALGEBRAS OF TYPE I¹

EDWARD SARIAN

(Received September 29, 1978, revised March 10, 1979)

Abstract. Tpye I W-* algebras do not have property L.

Let \mathscr{M} be a W-* algebra acting in separable Hilbert space h and let $\mathscr{M}(\mathscr{M})$ denote the unitary operators in \mathscr{M} . Corollary I.5.10 of [3] states that \mathscr{M} has direct integral decomposition into factors given by $\mathscr{M} = \int_{A} \bigoplus \mathscr{M}(\lambda) \mu(d\lambda)$. This paper assumes the reader is familiar with [4] and Chapter I of [3].

DEFINITION. \mathscr{A} has property L if there is a sequence $\{U_n\}$ contained in $\mathscr{U}(\mathscr{A})$ such that $\{U_n\} \to 0$ weakly and such that $\{U_nAU_n^*\} \to A$ strongly for each $A \in \mathscr{A}$.

Property L is a partial form of commutativity that was introduced by Pukánszky in [2]. We shall use direct integral theory to show that no type I W-* algebra has property L.

We establish some notation before proving two essential lemmas. \mathscr{N}' denotes the commutant of \mathscr{N} and is also a W-* algebra. By the center of \mathscr{N} , we mean the abelian W-* algebra $\mathscr{Z}(\mathscr{N}) = \mathscr{N} \cap \mathscr{N}'$. \mathscr{N}_1 represents the unit ball of \mathscr{N} and h_{∞} denotes the underlying Hilbert space of h, i.e., $h = \int_{\mathscr{N}} \bigoplus h_{\infty} \mu(d\lambda)$ (cf. [3] Definition I.2.4).

LEMMA 1. Let $\mathscr{A} = \int_{\Lambda} \bigoplus \mathscr{A}(\lambda) \mu(d\lambda)$ be a W-* algebra acting in h and let S denote $B(h_{\infty})_1$ taken with the strong-* operator topology. Then if N is a Borel subset of Λ , the set $F = \{(\lambda, T) | \lambda \in N, T \in \mathscr{A}(\lambda) \cap S\}$ is a Borel subset of $\Lambda \times S$.

PROOF. By [3] Lemma I.4.11, S is a complete separable metric space. Let d denote the metric which defines the topology on S. By [4] Lemma 1.5(a, c), there is a countable sequence of disjoint closed subsets e_i of Λ such that if $e = \Lambda - \bigcup_{i=1}^{\infty} e_i$, then $\mu(e) = 0$ and there is

AMS (MOS) subject classifications (1970). Primary 46L10.

Key Words and Phrases. Type I W-* algebra, property L.

¹ This paper is part of the author's doctoral dissertation which was completed at Stevens Institute of Technology under the direction of Dr. Paul Willig.