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LEAVES WITH NON-EXACT POLYNOMIAL GROWTH
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1. Introduction. Let &~ be a codimension one foliation of class
Cr (r ^ 0) of a compact manifold M which is tangent to the boundary.
Let M = UΓ=0 Ut be a finite cover of M by regular distinguished charts.
Let F be a leaf and PQaF f]U0 a plaque contained in F. The growth
function of F at Po, /: Z+ -*• Z+ is defined by

f(n) = the number of distinct plaques which can be reached from
the initial plaque Po by a plaque chain of length at most n
(see [5], [6]).

DEFINITION. F has polynomial growth if the growth function / of
F is dominated by a polynomial. In this case we define the upper
growth and lower growth of F, denoted u.gr(F) and l.gr(F) respectively,
as follows:

u.gr(F) = inf {deR+\f is dominated by the polynomial g{n) = nd)

Lgr(F) = sup{dei? + | / dominates the polynomial g(n) = nd} .

Finally, we say F has exact polynomial growth of degree d if the
growth function of F dominates a polynomial of degree d and is domi-
nated by a polynomial of degree d.

It is easy to see that the upper and lower growth of a leaf depend
neither on the choice of regular distinguished charts nor on the choice
of the initial plaque ([5]).

In [4] Hector posed the following problem: if F has polynomial growth,
then does F have exact polynomial growth of an integer degree? In
this paper we give two partial answers to this problem. We remark
that the answer is affirmative if the foliation is transversely analytic or
it is almost without holonomy ([7]).

THEOREM A. Let J^ be a codimension one foliation of class Cr

(r ^2) of a compact manifold M which is tangent to the boundary. Let
F be a leaf of J^. Assume that the growth function of F is dominated
by a polynomial of degree 2. Then F has exact polynomial growth of
degree 0, 1 or 2.


