Tôhoku Math. Journ. 32 (1980), 63-70.

FUBINI PRODUCTS OF C*-ALGEBRAS

TADASI HURUYA

(Received February 19, 1979)

1. Introduction. Let C and D be C*-algebras and let $C \otimes D$ denote their minimal (or spatial) C*-tensor product. For each $g \in C^*$ there is a unique bounded linear map R_g of $C \otimes D$ to D satisfying $R_g(c \otimes d) = \langle g, c \rangle d$. Similarly, for each $h \in D^*$ there is a unique bounded linear map L_h of $C \otimes D$ to C satisfying $L_h(c \otimes d) = \langle h, d \rangle c$. Let A and B be C*subalgebras of C and D, respectively. We define the Fubini product of A and B with respect to $C \otimes D$ to be

 $F(A, B, C \otimes D) = \{x \in C \otimes D : R_g(x) \in B, L_h(x) \in A \text{ for every } g \in C^*, h \in D^*\}$

(see [10]). If C_1 , C_2 and A are C^* -algebras such that $C_1 \supseteq C_2 \supseteq A$, and if D_1 , D_2 and B are C^* -algebras such that $D_1 \supseteq D_2 \supseteq B$, then $F(A, B, C_1 \otimes D_1)$ contains $F(A, B, C_2 \otimes D_2)$. In this paper we show that there is the largest Fubini product of A and B, denoted by $A \otimes_F B$. We also consider a condition for a C^* -algebra to have property S [13]. Aided by [15], we give several Fubini products $A \otimes_F B$ strictly containing $A \otimes B$.

The author would like to thank Professor J. Tomiyama for his useful suggestions. He would also like to thank Professor S. Wassermann for sending him a copy of the preprint [15].

2. Some properties of Fubini products. In this section we study certain elementary properties of Fubini products. The following result is known [12, Proposition 4.1] and is easy to check.

LEMMA 1. Let C and D be C*-algebras with C*-subalgebras A and B, respectively. Let \overline{C} and \overline{D} be the enveloping W*-algebras of C and D. Under the canonical embedding of $C \otimes D$ into the W*-tensor product $\overline{C} \otimes \overline{D}$, let $\overline{A} \otimes \overline{B}$ denote the weak closure of $A \otimes B$. Then $F(A, B, C \otimes D)$ is just $(C \otimes D) \cap (\overline{A} \otimes \overline{B})$ and is a C*-subalgebra of $C \otimes D$.

LEMMA 2. Let A, C_1 and C_2 be C^{*}-algebras such that $C_1 \supseteq A$ and $C_2 \supseteq A$, and let B, D_1 and D_2 be C^{*}-algebras such that $D_1 \supseteq B$ and $D_2 \supseteq B$. Suppose that there are four contractive and completely positive maps:

$$egin{array}{lll} \phi_1\colon C_1 o C_2, & \phi_2\colon C_2 o C_1, & \phi_i(a)=a & (i=1,\,2, & a\in A) \ , \ \psi_1\colon D_1 o D_2, \, \psi_2\colon D_2 o D_1, \, \psi_i(b)=b & (i=1,\,2, & b\in B) \ . \end{array}$$