FUBINI PRODUCTS OF C^{*}-ALGEBRAS

Tadasi Huruya

(Received February 19, 1979)

1. Introduction. Let C and D be C^{*}-algebras and let $C \otimes D$ denote their minimal (or spatial) C^{*}-tensor product. For each $g \in C^{*}$ there is a unique bounded linear map R_{g} of $C \otimes D$ to D satisfying $R_{g}(c \otimes d)=$ $\langle g, c\rangle d$. Similarly, for each $h \in D^{*}$ there is a unique bounded linear map L_{h} of $C \otimes D$ to C satisfying $L_{h}(c \otimes d)=\langle h, d\rangle c$. Let A and B be C^{*} subalgebras of C and D, respectively. We define the Fubini product of A and B with respect to $C \otimes D$ to be
$F(A, B, C \otimes D)=\left\{x \in C \otimes D: R_{g}(x) \in B, L_{h}(x) \in A\right.$ for every $\left.g \in C^{*}, h \in D^{*}\right\}$ (see [10]). If C_{1}, C_{2} and A are C^{*}-algebras such that $C_{1} \supseteq C_{2} \supseteq A$, and if D_{1}, D_{2} and B are C^{*}-algebras such that $D_{1} \supseteq D_{2} \supseteq B$, then $F(A, B$, $C_{1} \otimes D_{1}$) contains $F\left(A, B, C_{2} \otimes D_{2}\right)$. In this paper we show that there is the largest Fubini product of A and B, denoted by $A \otimes_{F} B$. We also consider a condition for a C^{*}-algebra to have property S [13]. Aided by [15], we give several Fubini products $A \otimes_{F} B$ strictly containing $A \otimes B$.

The author would like to thank Professor J. Tomiyama for his useful suggestions. He would also like to thank Professor S. Wassermann for sending him a copy of the preprint [15].
2. Some properties of Fubini products. In this section we study certain elementary properties of Fubini products. The following result is known [12, Proposition 4.1] and is easy to check.

Lemma 1. Let C and D be C^{*}-algebras with C^{*}-subalgebras A and B, respectively. Let \bar{C} and \bar{D} be the enveloping W^{*}-algebras of C and D. Under the canonical embedding of $C \otimes D$ into the W^{*}-tensor product $\bar{C} \bar{\otimes} \bar{D}$, let $\bar{A} \bar{\otimes} \bar{B}$ denote the weak closure of $A \otimes B$. Then $F(A, B, C \otimes D)$ is just $(C \otimes D) \cap(\bar{A} \bar{\otimes} \bar{B})$ and is a C^{*}-subalgebra of $C \otimes D$.

Lemma 2. Let A, C_{1} and C_{2} be C^{*}-algebras such that $C_{1} \supseteq A$ and $C_{2} \supseteq A$, and let B, D_{1} and D_{2} be C^{*}-algebras such that $D_{1} \supseteq B$ and $D_{2} \supseteq B$. Suppose that there are four contractive and completely positive maps:

$$
\begin{array}{ll}
\phi_{1}: C_{1} \rightarrow C_{2}, \dot{\phi}_{2}: C_{2} \rightarrow C_{1}, \phi_{i}(a)=a & (i=1,2, \quad a \in A), \\
\psi_{1}: D_{1} \rightarrow D_{2}, \dot{\psi}_{2}: D_{2} \rightarrow D_{1}, \psi_{i}(b)=b & (i=1,2, \quad b \in B) .
\end{array}
$$

