REMARKS ON THE LIMIT SETS OF KLEINIAN GROUPS

Katsumi Inoue

(Received July 12, 1979, revised November 19, 1979)

1. The so-called combination theorems of Maskit play an important role in the theory of Kleinian groups. In [6], Maskit proved that every function group can be constructed from elementary groups, quasi-Fuchsian groups and degenerate groups by using his combination theorems. Moreover, in [1] Abikoff and Maskit proved that every finitely generated Kleinian group can be constructed from elementary groups, degenerate groups and web groups in a similar manner. In this note we investigate the limit sets of Kleinian groups which are constructed by using the combination theorems.
2. Let G be a Kleinian group and denote by $\Omega(G)$ and $\Lambda(G)$ the region of discontinuity and the limit set of G, respectively. We denote by SL' the group of all the Möbius transformations. Consider a sequence $\left\{C_{n}\right\}$ of Jordan curves on \hat{C} and a point $z \in \hat{C}$. We say that $\left\{C_{n}\right\}$ nests about z, if C_{n+1} separates z from C_{n} for every natural number n and if the sequence of spherical diameters of $\left\{C_{n}\right\}$ forms a null sequence.

Let C be a Jordan curve on \hat{C} and $\left\{g_{n}\right\}$ be a sequence of elements of SL^{\prime}. We say that the sequence $\left\{g_{n}(C)\right\}$ converges to a point $z \in \hat{C}$, if there exists a point $x \in C$ so that $\left\{g_{n}(x)\right\}$ converges to z and the sequence of spherical diameters of $\left\{g_{n}(C)\right\}$ forms a null sequence.
3. Let G be a Kleinian group and let H be a subgroup of G. A subset S on \hat{C} is called precisely invariant under H in G, if $h(S)=S$ for every $h \in H$ and $g(S) \cap S=\varnothing$ for every $g \in G-H$. For a cyclic subgroup H of G, a precisely invariant disc B for H is the interior of a closed topological disc \bar{B} on \hat{C}, where $\bar{B}-\Lambda(H)$ is precisely invariant under H in G and $\bar{B}-\Lambda(H) \subset \Omega(G)$.

We use the combination theorems in the following forms.
Combination theorem I. Let G_{1} and G_{2} be two Kleinian groups and let $B_{i}(i=1,2)$ be a precisely invariant disc under H, a finite or a parabolic cyclic subgroup of both G_{1} and G_{2}. Assume that B_{1} and B_{2} have the common boundary γ and $B_{1} \cap B_{2}=\varnothing$. Let G be the group generated by G_{1} and G_{2}. Then we have the following:

