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1. Introduction. For ordinary differential equations, many authors
have discussed necessary and sufficient conditions for a closed set in the
^-dimensional Euclidean space Rn to be positively invariant. Yorke [11]
has discussed this problem by using a non-Lipschitzian Liapunov function
which is lower-semicontinuous. For an autonomous system, Brezis [1]
obtained a result under the assumption that the right hand side of the
system is locally Lipschitzian, and his proof depends essentially on this
assumption. Crandall [2] obtained a similar result by applying the method
of polygonal approximations. For a nonautonomous system, Hartman [5]
also considered an approximation which is different from the one con-
sidered in [2].

The purpose of this article is to discuss the same question for
functional differential equations with infinite delay. Seifert [10] also
discussed this question under the assumption that a closed set is convex.
In Section 2, we introduce an abstract phase space B which satisfies some
general hypotheses slightly different from those considered in [4]. We
consider a subset Ω in R x Rn such that the cross section Ωt = {y e Rn;
(ί, y) 6 Ω] is convex for all t e R and that the cross section Ωt satisfies a
continuity condition in the sense of Hausdorff metric. We discuss the
properties of Ω which play an important role in Section 3. In Section 3,
we state the main theorem. We give the necessary and sufficient condi-
tion that, for any initial value (σ, φ) in R x B such that φ(t — σ) e Ωt

for all t ^ σ, there exists at least one solution x(t) through (σ, ψ) which
is defined on its right maximal interval of existence and satisfies
(ί, x(t)) 6 Ω there. Special approximate solutions are needed to prove
the theorem. The construction of the solutions, although analogous to
the one in [5], is much more complicated for functional differential
equations. The proof of the theorem is given in Section 4. The case
where the delay is finite has been considered in [7] and [8] by a different
approach.


